So far, the Lyapunov direct method is still the most effective technique in the study of stability for ordinary differential equations and stochastic differential equations. Due to the shortage of the corresponding Itô formula, this useful method has not been popularized in stochastic partial differential equations. The aim of this work is to try to extend the Lyapunov direct method to the Itô stochastic reaction diffusion systems and to establish the corresponding Lyapunov stability theory, including stability in probablity, asymptotic stability in probability, and exponential stability in mean square. As the application of the obtained theorems, this paper addresses the stability of the Hopfield neural network and points out that the main results obtained by Holden Helge and Liao Xiaoxin et al. can be all regarded as the corollaries of the theorems presented in this paper
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.