While realistic in vitro tests may produce results that correspond to drug deposition in vivo, MT model selection was most important for the MDI and SMI, but much less important than inhalation strength for the DPI.
A methodology for studying the deagglomeration performance and emptying behavior of micronized mannitol powder from two commercial capsule-based dry powder inhalers (DPIs), the lowand high-resistance RS01 Ò , is presented. Mathematical modeling played a key role in the interpretation of the powder release behavior from these two DPI systems. Non-linear regression models, which were characterized from the aerosol obscuration versus time profiles obtained from laser diffraction particle sizing data, were used to estimate rate constants for emptying of mannitol powder. The effects of device resistance and associated pressure drops, sampling flow rate, rates of powder emptying, and the presence of capsule on the dispersion characteristics were studied. The presence of a capsule significantly improved the aerosolization performance of mannitol powder from both inhalers, which may be due to the extended powder-air-device interactions within the device. It is important to consider the stochastic nature of movement and physical state of the capsule when assessing the aerosolization mechanisms and dispersion performance from these complex delivery systems. The methodology set out in this study has the capacity to provide a greater level of detail in the study of aerosol plume characteristics from capsule-based DPIs.
This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a humidified chamber, to assess airway epithelia transport behavior in a more representative manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.