In order to study the interaction between two independent jets, a three-dimensional (3D) transient mathematical model is developed to investigate the flow field and acoustic properties of the two-stream jets. The results are compared with those of the single-stream jet at Mach number 0.9 and Reynolds number 3600. The large eddy simulation (LES) with dynamic Smagorinsky sub-grid scale (SGS) approach is used to simulate the turbulent jet flow structure. The acoustic field is evaluated by the Ffowcs Williams-Hawkings (FW-H) integral equation. Considering the compressibility of high-speed gas jets, the density-based explicit formulation is adopted to solve the governing equations. Meanwhile, the viscosity is approximated by using the Sutherland kinetic theory. The predicted flow characteristics as well as the acoustic properties show that they are in good agreement with the existing experimental and numerical results under the same flow conditions available in the literature. The results indicate that the merging phenomenon of the dual-jet is triggered by the deflection mechanism of the Coanda effect, which sequentially introduces additional complexity and instability of flow structure. One of the main factors affecting the dual-jet merging is the aperture ratio, which has a direct influence on the potential core and surrounding flow fluctuation. The analysis on the noise pollution reveals that the potential core plays a fundamental role in noise emission while the additional mixing noise makes less contribution than the single jet noise. The overall sound pressure level (OASPL) profiles have a directive property, suggesting an approximate 25 • deflection from the streamwise direction, however, shifting toward lateral direction of about 10 • to 15 • in the dual-jet. The conclusion obtained in this study can provide valuable data to guide the development of manufacturing-green technology in the multi-jet applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.