Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.
No abstract
Although a great deal is known about the life cycle of bacteriophage P22, the mechanism of phage DNA transport into Salmonella is poorly understood. P22 DNA is initially ejected into the periplasmic space and subsequently transported into the host cytoplasm. Three phage-encoded proteins (gp16, gp20, and gp7) are coejected with the DNA. To test the hypothesis that one or more of these proteins mediate transport of the DNA across the cytoplasmic membrane, we purified gp16, gp20, and gp7 and analyzed their ability to associate with membranes and to facilitate DNA uptake into membrane vesicles in vitro. Membrane association experiments revealed that gp16 partitioned into the membrane fraction, while gp20 and gp7 remained in the soluble fraction. Moreover, the addition of gp16, but not gp7 or gp20, to liposomes preloaded with a fluorescent dye promoted release of the dye. Transport of 32 P-labeled DNA into liposomes occurred only in the presence of gp16 and an artificially created membrane potential. Taken together, these results suggest that gp16 partitions into the cytoplasmic membrane and mediates the active transport of P22 DNA across the cytoplasmic membrane of Salmonella.Phages T2 and T4 are commonly depicted in textbook images performing a "hypodermic syringe-like" mechanism to eject DNA from the phage into Escherichia coli (13,14). This led to the idea that phage DNA is directly injected into the host cytoplasm by the contraction of the phage tail and driven by the release of pressure within the phage head (13). More recent evidence provided convincing evidence that this is not a general mechanism of phage DNA transport into the bacterial host (12, 32). The pressure inside the phage capsid due to DNA compression (7, 29) may promote the initial ejection of phage into the bacterial host, but the osmotic pressure within the bacterial cytoplasm exerts an opposing force that prevents complete transfer of phage DNA in vivo (13). For example, the initial 850 bp of phage T7 DNA enters the cell rapidly, but the remainder of the T7 genome is pulled into E. coli by RNA polymerase (9, 10, 13).Phage P22 is a temperate, icosahedral, "lambdoid" bacteriophage that is commonly used for generalized transduction in Salmonella. P22 has a short, noncontractile tail that cannot penetrate both the outer and inner membranes of its host. The P22 gene 9 protein forms the hexameric tail spike that specifically recognizes the Salmonella O antigen. After reversible binding to the O antigen, the endorhamnosidase activity of the tail spike proteins cleaves the O-antigen subunits of the lipopolysaccharide until the proteins recognize an uncharacterized secondary receptor on the outer membrane of the host bacterium. Binding to the secondary receptor triggers release of the phage DNA, together with the phage-encoded ejection proteins (gp7, gp16, and gp20), into the periplasmic space of the host (17).The phage-encoded ejection proteins are essential for the viability of the phage. One of the proposed functions of the ejection proteins is to pr...
The work demonstrates the use of detailed, high-throughput phenotyping to generate and test mechanistic models to explain the genetic diversity of photosynthetic responses to abiotic stress. We assessed a population of recombinant inbred lines (RILs) of cowpea (Vigna unguiculata. (L.) Walp.) with significant differences in a range of photosynthetic responses to chilling. We found well-defined, colocalized (overlapping) QTL intervals for photosynthetic parameters, suggesting linkages among the redox states of Q, the thylakoid pmf, through effects on cyclic electron flow and photodamage to PSII. We propose that these genetic variations optimize photosynthesis in the tolerant lines under low temperatures, preventing recombination reactions within Photosystem II that can lead to deleterious O production. By contrast, we did not observe linkages to PSI redox state, PSI photodamage or ATP synthase activity, or nyctinastic (diurnally controlled) leaf movements, likely indicating that several proposed models likely do not contribute to the genetic control of photosynthesis at low temperature in our mapping panel. The identified QTL intervals include a range of potential causative genetic components, with direct applications to breeding of photosynthesis for more climate-resilient productivity.
Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.