The proximal distribution of water around proteins is a convenient method of quantifying solvation. We consider the effect of charged and sulfur-containing amino acid side-chain atoms on the proximal radial distribution function (pRDF) of water molecules around proteins using side-chain analogs. The pRDF represents the relative probability of finding any solvent molecule at a distance from the closest or surface perpendicular protein atom. We consider the near-neighbor distribution. Previously, pRDFs were shown to be universal descriptors of the water molecules around C, N, and O atom types across hundreds of globular proteins. Using averaged pRDFs, a solvent density around any globular protein can be reconstructed with controllable relative error. Solvent reconstruction using the additional information from charged amino acid side-chain atom types from both small models and protein averages reveals the effects of surface charge distribution on solvent density and improves the reconstruction errors relative to simulation. Solvent density reconstructions from the small-molecule models are as effective and less computationally demanding than reconstructions from full macromolecular models in reproducing preferred hydration sites and solvent density fluctuations.
Background Solvation density locations are important for protein dynamics and structure. Knowledge of the preferred hydration sites at biomolecular interfaces and those in the interior of cavities can enhance understanding of structure and function. While advanced X-ray diffraction methods can provide accurate atomic structures for proteins, that technique is challenged when it comes to providing accurate hydration structures, especially for interfacial and cavity bound solvent molecules. Methods Advances in integral equation theories which include more accurate methods for calculating the long-ranged Coulomb interaction contributions to the three-dimensional distribution functions make it possible to calculate angle dependent average solvent structure, accurately, around and inside irregular molecular conformations. The proximal Radial Distribution method provides another approximate method to determine average solvent structures for biomolecular systems based on a proximal or near neighbor solvent distribution that can be constructed from previously collected solvent distributions. These two approximate methods, along with all-atom molecular dynamics simulations are used to determine the solvent density inside the myoglobin heme cavity. Discussion and Results Myoglobin is a good test system for these methods because the cavities are many and one is large, tens of Å, but is shown to have only four hydration sites. These sites are not near neighbors which implies that the large cavity must have more than one way in and out. Conclusions Our results show that main solvation sites are well reproduced by all three methods. The techniques also produce a clearly identifiable solvent pathway into the interior of the protein. General Significance The agreement between Molecular Dynamics and less computationally demanding approximate methods is encouraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.