Climate change is regarded as one of the major factors enhancing the transmission intensity of dengue fever. In this study, we estimated the threshold effects of temperature on Aedes mosquito larval index as an early warning tool for dengue prevention. We also investigated the relationship between dengue vector index and dengue epidemics in Taiwan using weekly panel data for 17 counties from January 2012 to May 2019. To achieve our goals, we first applied the panel threshold regression technique to test for threshold effects and determine critical temperature values. Data were then further decomposed into different sets corresponding to different temperature regimes. Finally, negative binomial regression models were applied to assess the non-linear relationship between meteorological factors and Breteau index (BI). At the national level, we found that a 1°C temperature increase caused the expected value of BI to increase by 0.09 units when the temperature is less than 27.21 °C, and by 0.26 units when the temperature is greater than 27.21 °C. At the regional level, the dengue vector index was more sensitive to temperature changes because double threshold effects were found in the southern Taiwan model. For southern Taiwan, as the temperature increased by 1°C, the expected value of BI increased by 0.29, 0.63, and 1.49 units when the average temperature was less than 27.27 °C, between 27.27 and 30.17 °C, and higher than 30.17 °C, respectively. In addition, the effects of precipitation and relative humidity on BI became stronger when the average temperature exceeded the thresholds. Regarding the impacts of climate change on BI, our results showed that the potential effects on BI range from 3.5 to 54.42% under alternative temperature scenarios. By combining threshold regression techniques with count data regression models, this study provides evidence of threshold effects between climate factors and the dengue vector index. The proposed threshold of temperature could be incorporated into the implementation of public health measures and risk prediction to prevent and control dengue fever in the future.
This study examines how experience of severe acute respiratory syndrome (SARS) influences the impact of coronavirus disease (COVID-19) on international tourism demand for four Asia-Pacific Economic Cooperation (APEC) economies, Taiwan, Hong Kong, Thailand, and New Zealand, over the 1 January–30 April 2020 period. To proceed, panel regression models are first applied with a time-lag effect to estimate the general effects of COVID-19 on daily tourist arrivals. In turn, the data set is decomposed into two nation groups and fixed effects models are employed for addressing the comparison of the pandemic-tourism relationship between economies with and without experiences of the SARS epidemic. Specifically, Taiwan and Hong Kong are grouped as economies with SARS experiences, while Thailand and New Zealand are grouped as countries without experiences of SARS. The estimation result indicates that the number of confirmed COVID-19 cases has a significant negative impact on tourism demand, in which a 1% COVID-19 case increase causes a 0.075% decline in tourist arrivals, which is a decline of approximately 110 arrivals for every additional person infected by the coronavirus. The negative impact of COVID-19 on tourist arrivals for Thailand and New Zealand is found much stronger than for Taiwan and Hong Kong. In particular, the number of tourist arrivals to Taiwan and Hong Kong decreased by 0.034% in response to a 1% increase in COVID-19 confirmed cases, while in Thailand and New Zealand, a 1% national confirmed cases increase caused a 0.103% reduction in tourism demand. Moreover, the effect of the number of domestic cases on international tourism is found lower than the effect caused by global COVID-19 mortality for the economies with SARS experiences. In contrast, tourist arrivals are majorly affected by the number of confirmed COVID-19 cases in Thailand and New Zealand. Finally, travel restriction in all cases is found to be the most influencing factor for the number of tourist arrivals. Besides contributing to the existing literature focusing on the knowledge regarding the nexus between tourism and COVID-19, the paper’s findings also highlight the importance of risk perception and the need of transmission prevention and control of the epidemic for the tourism sector.
Ambient air pollution from energy use and other sources is a major environmental risk factor in the incidence and progression of serious diseases, such as cardiovascular and respiratory diseases. This study elucidates the health effects of energy consumption from air pollution in China based on multiple threshold effects of the population-weighted exposure to PM2.5 (fine particles less than 2.5 microns in diameter) on particle-related mortality rate. We firstly estimate the causal relationship between coal consumption and PM2.5 in China for 2004–2010 using a panel regression model. Panel threshold models are applied to access the non-linear relationships between PM2.5 and cause-specific mortality rates that indicate the health effects are dependent on the PM2.5 ranges. By combining these steps, we calculate the health impacts of coal consumption based on threshold effects of PM2.5. We find that a 1% coal consumption increase induces a 0.23% increase in PM2.5. A triple threshold effect is found between PM2.5 and cardiovascular mortality; for example, increasing PM2.5 exposure causes cardiovascular mortality rate to increase when PM2.5 lies in 17.7–21.6 μg/m3 and 21.6–34.3 μg/m3, with the estimated increments being 0.81% and 0.26%, respectively, corresponding to 1% PM2.5 increase. A single threshold effect of SO2 on respiratory mortality rate is identified and allows the estimation of the mortality effects of PM2.5 regarding the two regimes of SO2. Finally, we access the health impacts of coal consumption under specific estimated thresholds. This study provides a better understanding of sources contributing to related-air pollution mortality. The multi-threshold effect of PM2.5 could be considered for further applications in harmonizing emission standards in China and other developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.