A set of 17 novel ketolides bearing an aryltetrazolyl-substituted alkyl side chain were synthesized and evaluated for their antibacterial activities, which the aryltetrazolyl group was selected to replace the hetero-aryl moiety of the side chain in telithromycin for designing new compounds. The synthesis of aryltetrazolyl alkylamines was reported in detail. The antibacterial activities of new ketolides were evaluated against a number of pathogens including macrolide-resistant organisms by using telithromycin as the reference. Many of the evaluated compounds exhibited remarkable activities against both erythromycinsusceptible and erythromycin-resistant organisms such as Staphylococcus aureus (except S. aureus AD-08), Pseudomonas aeruginosa and Escherichia coli. Among these, the compound 11e exhibited excellent antibacterial potency against all the strains in comparison with others.
Seventeen acylides bearing an aryl-tetrazolyl alkyl-substituted side chain were synthesized, starting from clarithromycin, via several reactions including hydrolysis, acetylating, esterification, carbamylation, and Michael addition. The structures of all new compounds were confirmed by 1H nuclear magnetic resonance spectroscopy, 13C nuclear magnetic resonance spectroscopy, and mass spectrometry. All these synthesized acylides were evaluated for in vitro antimicrobial activities against gram-positive pathogens (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative pathogens (Pseudomonas aeruginosa, Escherichia coli), using the broth microdilution method. Results showed that compounds 10e, 10f, 10g, 10 h, 10o have good antibacterial activities.
Design, Synthesis and Antibacterial Activity of Novel Ketolides Bearing an Aryltetrazolyl-Substituted Alkyl Side Chain. -A series of novel C-11,12 cyclic carbamate ketolides (17 examples) are synthesized from clarithromycin and evaluated for their antibacterial activities. Derivatives (I), the most active compound, exhibits excellent antibacterial potency against all the strains studied. -(SONG, Q.-L.; GUO, B.-Q.; ZHANG, W.; LAN, P.; SUN, P.-H.; CHEN*, W.-M.; J. Antibiot. 64 (2011) 8, 571-581, http://dx.doi.org/10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.