Abstract. The quantitative convergence to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks with mass action kinetics is studied by using the so-called entropy method. In the first part of the paper, by deriving explicitly the entropy dissipation, we show that for complex balanced systems without boundary equilibria, each trajectory converges exponentially fast to the unique complex balance equilibrium. Moreover, a constructive proof is proposed to explicitly estimate the rate of convergence in the special case of a cyclic reaction. In the second part of the paper, complex balanced systems with boundary equilibria are considered. We focus on a specific case involving three chemical substances for which the boundary equilibrium is shown to be unstable in some sense, so that exponential convergence to the unique strictly positive equilibrium is recovered.
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws.Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
In this paper, the applicability of the entropy method for the trend towards equilibrium for reaction-diffusion systems arising from first order chemical reaction networks is studied. In particular, we present a suitable entropy structure for weakly reversible reaction networks without detail balance condition.We show by deriving an entropy-entropy dissipation estimate that for any weakly reversible network each solution trajectory converges exponentially fast to the unique positive equilibrium with computable rates. This convergence is shown to be true even in cases when the diffusion coefficients of all but one species are zero.For non-weakly reversible networks consisting of source, transmission and target components, it is shown that species belonging to a source or transmission component decay to zero exponentially fast while species belonging to a target component converge to the corresponding positive equilibria, which are determined by the dynamics of the target component and the mass injected from other components. The results of this work, in some sense, complete the picture of trend to equilibrium for first order chemical reaction networks.2010 Mathematics Subject Classification. 35B35, 35B40, 35F35, 35K37, 35Q92.
The convergence to equilibrium of mass action reaction-diffusion systems arising from networks of chemical reactions is studied. The considered reaction networks are assumed to satisfy the detailed balance condition and have no boundary equilibria. We propose a general approach based on the so-called entropy method, which is able to quantify with explicitly computable rates the decay of an entropy functional in terms of an entropy entropy-dissipation inequality based on the totality of the conservation laws of the system.As a consequence follows convergence to the unique detailed balance equilibrium with explicitly computable convergence rates. The general approach is further detailed for two important example systems: a single reversible reaction involving an arbitrary number of chemical substances and a chain of two reversible reactions arising from enzyme reactions.
Abstract. In this paper, using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semi-linear degenerate parabolic equation in an arbitrary domain, without restriction on the growth order of the polynomial type non-linearity and with a suitable exponential growth of the external force. The obtained results improve some recent ones for the non-autonomous reaction-diffusion equations.2010 Mathematics Subject Classification. 35B41, 35K65, 35D05.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.