Rough set theory is a popular mathematical knowledge to resolve problems which are vagueness and uncertainly. And it has been used of solving the redundancy of attribute and data. Decision tree has been widely used in data mining techniques, because it is efficient, fast and easy to be understood in terms of data classification. There are many approaches have been used to generate a decision tree. In this paper, a novel and effective algorithm is introduced for decision tree. This algorithm is based on the core of discernibility matrix on rough set theory and the degree of consistent dependence. This algorithm is to improve the decision tree on node selection. This approach reduces the time complexity of the decision tree production and space complexity compared with ID3.In the end of the article, there is an example of the algorithm can exhibit superiority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.