Peripheral sensory neurons detect diverse physical stimuli and transmit the information into the CNS. At present, the genetic tools for specifically studying the development, plasticity, and regeneration of the sensory axon projections are limited. We found that the gene encoding Advillin, an actin binding protein that belongs to the gelsolin superfamily, is expressed almost exclusively in peripheral sensory neurons. We next generated a line of knock-in mice in which the start codon of the Advillin is replaced by the gene encoding human placenta alkaline phosphatase (Avil-hPLAP mice). In heterozygous Avil-hPLAP mice, sensory axons, the exquisite sensory endings, as well as the fine central axonal collaterals can be clearly visualized with a simple alkaline phosphatase staining. Using this mouse line, we found that the development of peripheral target innervation and sensory ending formation is an ordered process with specific timing depending on sensory modalities. This is also true for the in-growth of central axonal collaterals into the brainstem and the spinal cord. Our results demonstrate that Avil-hPLAP mouse is a valuable tool for specifically studying peripheral sensory neurons. Functionally, we found that the regenerative axon growth of Advillin-null sensory neurons is significantly shortened and that deletion of Advillin reduces the plasticity of whisker-related barrelettes patterns in the hindbrain.
SUMMARY
We developed a technology (Capturing Activated Neural Ensembles, or CANE) to label, manipulate, and trans-synaptically trace neural circuits that are transiently activated in behavioral contexts with high efficiency and temporal precision. CANE consists of a knock-in mouse and engineered viruses designed to specifically infect activated neurons. Using CANE, we selectively labeled neurons that were activated by either fearful or aggressive social encounters in a hypothalamic subnucleus previously known as a locus for aggression, and discovered that social fear and aggression neurons are intermixed but largely distinct. Optogenetic stimulation of CANE-captured social fear neurons (SFNs) is sufficient to evoke fear-like behaviors in normal social contexts, whereas silencing SFNs resulted in reduced social avoidance. CANE-based mapping of axonal projections and presynaptic inputs to SFNs further revealed a highly distributed and recurrent neural network. CANE is a broadly applicable technology for dissecting causality and connectivity of spatially intermingled but functionally distinct ensembles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.