We show that Stieltjes moment sequences are infinitely log-convex, which parallels a famous result that (finite) Pólya frequency sequences are infinitely log-concave. We introduce the concept of q-Stieltjes moment sequences of polynomials and show that many well-known polynomials in combinatorics are such sequences. We provide a criterion for linear transformations and convolutions preserving Stieltjes moment sequences. Many well-known combinatorial sequences are shown to be Stieltjes moment sequences in a unified approach and therefore infinitely log-convex, which in particular settles a conjecture of Chen and Xia about the infinite log-convexity of the Schröder numbers. We also list some interesting problems and conjectures about the log-convexity and the Stieltjes moment property of the (generalized) Apéry numbers.
In this paper we study unimodality problems for the independence polynomial
of a graph, including unimodality, log-concavity and reality of zeros. We
establish recurrence relations and give factorizations of independence
polynomials for certain classes of graphs. As applications we settle some
unimodality conjectures and problems.Comment: 17 pages, to appear in European Journal of Combinatoric
Let {T n,k } n,k≥0 be an array of nonnegative numbers satisfying the recurrence relationWe obtain some results for the total positivity of the matrix T n,k n,k≥0 , Pólya frequency properties of the row and column generating functions, and q-log-convexity of the row generating functions. This allows a unified treatment of the properties above for some triangular arrays of the second kind, including the Stirling triangle, Jacobi-Stirling triangle, Legendre-Stirling triangle, and central factorial numbers triangle.
We develop techniques to deal with monotonicity of sequences {z n+1 /z n } and { n √ z n }. A series of conjectures of Zhi-Wei Sun and of Amdeberhan et al. are verified in certain unified approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.