Long noncoding RNAs (lncRNA) play a role in carcinogenesis. However, the function of lncRNAs in human gastric cancer remains largely unknown. In this study, we identifi ed a novel lncRNA, GClnc1, which was upregulated and associated with tumorigenesis, tumor size, metastasis, and poor prognosis in gastric cancer. GClnc1 affected gastric cancer cell proliferation, invasiveness, and metastasis in multiple gastric cancer models. Mechanistically, GClnc1 bound WDR5 (a key component of histone methyltransferase complex) and KAT2A histone acetyltransferase, acted as a modular scaffold of WDR5 and KAT2A complexes, coordinated their localization, specifi ed the histone modifi cation pattern on the target genes, including SOD2 , and consequently altered gastric cancer cell biology. Thus, GClnc1 is mechanistically, functionally, and clinically oncogenic in gastric cancer. Targeting GClnc1 and its pathway may be meaningful for treating patients with gastric cancer.
SIGNIFICANCE:This report documents a novel lncRNA, GClnc1, which may act as a scaffold to recruit the WDR5 and KAT2A complex and modify the transcription of target genes. This study reveals that GClnc1 is an oncogenic lncRNA in human gastric cancer. Cancer Discov; 6(7); 784-801.
An in situ thermally reduced graphene/polyethylene conductive composite with a segregated structure was fabricated, which achieved a high electromagnetic interference shielding effectiveness of up to 28.3-32.4 dB at an ultralow graphene loading of 0.660 vol.%. Our work suggests a new way of effectively using graphene.
Super-tough conducting carbon nanotube (CNT)/ultrahigh-molecular-weight polyethylene (UHMWPE) composites were prepared by a facile method; a very small amount of high-density polyethylene (HDPE) was used as the percolated polymer phase to load the CNTs. A structural examination revealed the formation of unique conductive networks by combination of the typical segregated and double-percolated structure, in which the fully percolated CNT/carrier polymer layers were localized at the interfaces between UHMWPE granules. Owing to the synergistic effect of the segregated and double-percolated structures, only 0.3 wt% of CNTs can make the composite very conductive. More interestingly, after the addition of only 2.7 wt% of HDPE, the ultimate strain, tear strength, and impact strength reached 478%, 35.3 N and 58.1 kJ m À2 , respectively; these corresponded to remarkable increases of 265%, 61.9%, and 167% in these properties compared with the conventional segregated materials. These results were ascribed to the intensified interfacial adhesion between UHMWPE granules, which resulted from the strong inter-diffusion and heat-sealing between the HDPE and UHMWPE molecules. A model was proposed to explain the outstanding ductility and toughness properties of the segregated and double-percolated CPC material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.