Metabolic reprogramming is a hallmark of cancer. Herein we discovered that the key glycolytic enzyme pyruvate kinase M2 isoform (PKM2), but not the related isoform PKM1, is methylated by co-activator associated arginine methyltransferase 1 (CARM1). PKM2 methylation reversibly shifts the balance of metabolism from oxidative phosphorylation to aerobic glycolysis in breast cancer cells. Oxidative phosphorylation depends on mitochondria calcium concentration, which becomes critical for cancer cell survival when PKM2 methylation is blocked. By interacting with and suppressing the expression of inositol 1, 4, 5-trisphosphate receptors (IP3Rs), methylated PKM2 inhibits the influx of calcium from endoplasmic reticulum (ER) to mitochondria. Inhibiting PKM2 methylation with a competitive peptide delivered by nanoparticle perturbs metabolic energy balance in cancer cells, leading to decrease of cell proliferation, migration, and metastasis. Collectively, the CARM1-PKM2 axis serves as a metabolic reprogramming mechanism in tumorigenesis, and inhibiting PKM2 methylation generates metabolic vulnerability to IP3R-dependent mitochondrial functions.
Human O-GlcNAcase (hOGA) is the unique enzyme responsible for the hydrolysis of the O-linked β-N-acetyl glucosamine (O-GlcNAc) modification, an essential protein glycosylation event that modulates the function of numerous cellular proteins in response to nutrients and stress. Here we report crystal structures of a truncated hOGA, which comprises the catalytic and stalk domains, in apo form, in complex with an inhibitor, and in complex with a glycopeptide substrate. We found that hOGA forms an unusual arm-in-arm homodimer in which the catalytic domain of one monomer is covered by the stalk domain of the sister monomer to create a substrate-binding cleft. Notably, the residues on the cleft surface afford extensive interactions with the peptide substrate in a recognition mode that is distinct from that of its bacterial homologs. These structures represent the first model of eukaryotic enzymes in the glycoside hydrolase 84 (GH84) family and provide a crucial starting point for understanding the substrate specificity of hOGA, which regulates a broad range of biological and pathological processes.
The activated sludge process is an essential process for treating domestic and industrial wastewaters in most wastewater treatment plants (WWTPs). This process consists of a mixture of general and special microorganisms in a form of a complex enrichment population. Thus, the exploration of activated sludge microbial communities is crucial to improve the performance of activated sludge process. In this study, we investigated the phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale WWTPs. Four 16S rRNA gene clone libraries were constructed from activated sludge samples. In all samples, Proteobacteria was the most abundant phylogenetic group, followed by Bacteroidetes and Firmicutes. The dominance of Proteobacteria was further demonstrated by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP). Some specific genera, e.g., Nitrosomonas, Thauera, and Dechloromonas, which significantly correlate with the functions and performance of wastewater treatment, were abundant in all samples. A large number of unclassified sequences were found in the library, suggesting that a wide variety of novel species may inhabit complex activated sludge communities. The structures of the bacterial community did not differ significantly among samples. All samples utilized the vast majority of 31 carbon sources of an EcoPlate (Biolog), suggesting that activated sludge microbial communities possess high metabolic potential and equivalent functions required for wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.