Pallet pose estimation is one of the key technologies for automated fork pickup of driverless industrial trucks. Due to the complex working environment and the enormous amount of data, the existing pose estimation approaches cannot meet the working requirements of intelligent logistics equipment in terms of high accuracy and real time. A point cloud data-driven pallet pose estimation method using an active binocular vision sensor is proposed, which consists of point cloud preprocessing, Adaptive Gaussian Weight-based Fast Point Feature Histogram extraction and point cloud registration. The proposed method overcomes the shortcomings of traditional pose estimation methods, such as poor robustness, time consumption and low accuracy, and realizes the efficient and accurate estimation of pallet pose for driverless industrial trucks. Compared with traditional Fast Point Feature Histogram and Signature of Histogram of Orientation, the experimental results show that the proposed approach is superior to the above two methods, improving the accuracy by over 35% and reducing the feature extraction time by over 30%, thereby verifying the effectiveness and superiority of the proposed method.
Automated guided vehicles are widely used in warehousing environments for automated pallet handling, which is one of the fundamental parts to construct intelligent logistics systems. Pallet detection is a critical technology for automated guided vehicles, which directly affects production efficiency. A novel pallet detection method for automated guided vehicles based on point cloud data is proposed, which consists of five modules including point cloud preprocessing, key point extraction, feature description, surface matching and point cloud registration. The proposed method combines the color with the geometric features of the pallet point cloud and constructs a new Adaptive Color Fast Point Feature Histogram (ACFPFH) feature descriptor by selecting the optimal neighborhood adaptively. In addition, a new surface matching method called the Bidirectional Nearest Neighbor Distance Ratio-Approximate Congruent Triangle Neighborhood (BNNDR-ACTN) is proposed. The proposed method overcomes the problems of current methods such as low efficiency, poor robustness, random parameter selection, and being time-consuming. To verify the performance, the proposed method is compared with the traditional and modified Iterative Closest Point (ICP) methods in two real-world cases. The results show that the Root Mean Square Error (RMSE) is reduced to 0.009 and the running time is reduced to 0.989 s, which demonstrates that the proposed method has faster registration speed while maintaining higher registration accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.