Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.
SUMMARYA variety of immune cell therapies proposed for use in the treatment of cancer, including both autologus cells (Lymphokine Activated Killer, Cytokine Induced Killer) or cell lines (TALL-104, NK-92), rely on recognition of NKG2D ligands on malignant cells for targeting. These ligands, such as MICA and MICB in humans are stress response ligands and are commonly, but not ubiquitously expressed within tumors. Several tumor escape mechanisms have been reported, including ligand down regulation and internalization, or proteolytic cleavage and shedding of their exposed portions (releasing soluble MICA and MICB; sMICA, sMICB). Therefore, an ability to pre-screen patients for the level of tumor cell surface expression and shedding of these ligands would prevent needless treatment of patients that are unable to respond, while targeted pretreatment of patients to increase surface expression and/ or block shedding would enhance the subsequent effectiveness of these therapies. Here we report that serum tests of sMICA and sMICB in conjunction with tumor measurements might be used to determine rates of shedding from a tumor and that treatment with a selected combination of histone deacetylase inhibitors (to upregulate cell surface MICA/B in some tumors), and metalloproteinase inhibitors (to block MICA/B shedding in others) can be incorporated to regulate cell surface MICA/B levels prior to immune cell therapy, significantly enhancing their effectiveness (either used alone or as carrier vehicles for oncolytic viruses). Ultimately pre-screening patients undergoing such immune cell therapies might be used to personalize cancer treatment regimens based on the NKG2D-ligand status of the tumor.
Recent developments in the field of oncolytic or tumor-selective viruses have meant that the clinical applications of these agents are now being considered in more detail. Like most cancer therapies it is likely that they will be used primarily in combination with other therapeutics. Although several reports have shown that oncolytic viruses can synergize with chemotherapies within an infected cancer cell, it would be particularly important to determine whether factors released from infected cells could enhance the action of chemotherapies at a distance. Here, we demonstrate in vitro synergy between oncolytic vaccinia and taxanes. However, we also show, for the first time, that this synergy is at least partly due to the release of factors from the infected cells that are capable of sensitizing surrounding cells to chemotherapy. Several cellular factors were identified as being mediators of this bystander effect, including type I interferon released soon after infection and high-mobility group protein B1 (HMGB1) released after cell death. This represents the first description of these mechanisms for beneficial interactions between viral and traditional tumor therapies. These data may provide a direct basis for the design of clinical trials with agents currently in the clinic, as well as providing insight into the development of next generation viral vectors.
Metastasis is the major reason for breast cancer-related deaths. Although there is a host of indirect evidence for a role of PKCα in primary breast cancer growth, its role in the molecular pathways leading to metastasis have not been comprehensively studied. By treating mice with αV5-3, a novel peptide inhibitor selective for PKCα, we were able to determine how PKCα regulates metastasis of mammary cancer cells using a syngeneic and orthotopic model. The primary tumor growth was not affected by αV5-3 treatment. However, the mortality rate was reduced and metastasis in the lung decreased by more than 90% in the αV5-3-treated mice relative to the control-treated mice. αV5-3 treatment reduced intravasation by reducing MMP-9 activities. αV5-3 treatment also reduced lung seeding of tumor cells and decreased cell migration, effects that were accompanied by a reduction in NFκB-activity and cell surface levels of the CXCL12 receptor, CXCR4. αV5-3 treatment caused no apparent toxicity in non-tumor bearing naïve mice. Rather, inhibiting PKCα protected against liver damage and increased the number of immune cells in tumor-bearing mice. Importantly, αV5-3 showed superior efficacy relative to anti-CXCR4 antibody in reducing metastasis, in vivo. Together, these data show that pharmacological inhibition of PKCα effectively reduces mammary cancer metastasis by targeting intravasation and lung seeding steps in the metastatic process and suggest that PKCα-specific inhibitors, such as αV5-3, can be used to study the mechanistic roles of PKCα specifically and may provide a safe and effective treatment for the prevention of lung metastasis of breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.