Limited-entry fracturing (LEF) technology is a widely used method to realize the simultaneous propagation of multiple fractures in horizontal wells. The key of this technology is to create high perforation friction to maintain the high treatment pressure in the wellbore and realize the uniform fluid entry of multi-fractures; however, high perforation friction cannot be effectively maintained due to the serious perforation erosion effect. Considering that the current laboratory studies mostly used small fluid injection flowrate, low injection pressure, and small proppant dosage, this study has developed a field-scale flow system to investigate the effect of various factors on perforation erosion under real field conditions. The filed-scale flow system uses the real fracturing trucks, proppant, and perforated wellbore, the fluid flow rate through perforation could reach 200 m/s and the injection pressure could reach 105 MPa. The effects of different parameters, such as injection flow rates, proppant concentration, proppant type, proppant size, and carrying fluid viscosity, on the perforation erosion were investigated. The experimental results show that: (1) The perforation friction during erosion goes through two stages, i.e., the roundness erosion stage and the diameter erosion stage. The reduction of perforating friction mainly occurred in the first stage, which was completed after injecting 1 m3 proppant. (2) After erosion, the perforation changes from the original circular shape to a trumpet shape, the inner diameter is much larger than the outer diameter. (3) The more serious perforation erosion is caused by the conditions of high injection flow rate, large proppant size, using ceramic proppant, and low viscosity fluid. The findings of this study can help for a better understanding of perforation erosion during the limited-entry fracturing in the horizontal wells, and also could promote the establishment of a theoretical model of perforation erosion under the field-scale conditions.
Mahu oilfield is a typical tight gravel oil reservoir. At present, long-stage multi-cluster fracturing is widely used for reservoir stimulation, and multiple-clusters treatment is realized through cluster perforation. Field monitoring indicates that not all perforation clusters produce hydraulic fractures in the fracturing process, and each cluster of hydraulic fractures in the section will expand unevenly. The unbalanced expansion of multiple clusters of fractures in the section seriously affects the effect of reservoir reconstruction of horizontal wells. Aiming at the long-stage multi-cluster fracturing of horizontal wells, a multi-fracture propagation calculation model considering wellbore flow, performance friction, different fracture criteria at the tip, and the interaction stress among multiple fractures is established in this paper. In order to improve the calculation efficiency, an explicit Runge Kutta Legendre algorithm is proposed to solve the structural mesh, and the solution program is compiled, which provides a basis for the theoretical analysis and rapid solution of the mechanism of multiple fracture growth. Finally, taking Mahu oil field as an example, we calculate the multi fracture propagation and flow distribution under different geological conditions, perforation conditions, and construction parameters. The research results will help to improve the fracturing efficiency of long-stage multi-cluster fractures.
Re-fracturing treatments of horizontal wells are increasingly gaining popularity to address the issue of rapid production decline and low recovery ratio for the conglomerate reservoir of the Mahu Oilfield. How to effectively select the horizontal wells with potentiality for re-fracturing and conduct the re-fracturing operation to achieve the purpose is the key problem that needs to be investigated urgently. However, the conventional methods for vertical wells are not in our consideration, and some methods for horizontal wells have their limits for the Mahu reservoir. To cope with problems mentioned above, fourteen factors from geology parameters, engineering parameters, and production performance parameters are considered to establish a multi-level evaluation model to quantify the potentiality of each horizontal well for re-fracturing in the Mahu Oilfield. First, the analytic hierarchy process (AHP) is used to obtain the weights of various factors affecting the productivity of horizontal wells, and on this basis, the subordination degree and evaluation matrix are then calculated, and finally, the fuzzy synthetic determination is obtained to determine the candidate wells for re-fracturing. The results have shown that the weights corresponding to engineering parameters obtained by the AHP method are the largest, followed by geology parameters, and the weights of production performance parameters are the minimal relatively; the number of fractures and the sand quantity of single cluster are the main controlling factors in engineering factors, and the initial formation pressure is the main controlling factor in geological factors; there is obvious correlation between the cumulative oil production after 90 days of primary fracturing with final cumulative production. Wells M15, M13, and M7 rank top three among the candidate wells. Through re-fracturing treatment by temporary plugging, the daily oil production of well M15 has increased significantly and is even higher than that of the primary hydraulic fracturing stimulation, confirming the reliability of the proposed selection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.