Drug side-effects have become a major public health concern as they are the underlying cause of over a million serious injuries and deaths each year. Therefore, it is of critical importance to detect side-effects as early as possible. Existing computational methods mainly utilize the drug chemical profile and the drug biological profile to predict the side-effects of a drug. In the utilized drug biological profile information, they only focus on drug–target interactions and neglect the modes of action of drugs on target proteins. In this paper, we develop a new method for predicting potential side-effects of drugs based on more comprehensive drug information in which the modes of action of drugs on target proteins are integrated. Drug information of multiple types is modeled as a signed heterogeneous information network. We propose a signed heterogeneous information network embedding framework for learning drug embeddings and predicting side-effects of drugs. We use two bias random walk procedures to obtain drug sequences and train a Skip-gram model to learn drug embeddings. We experimentally demonstrate the performance of the proposed method by comparison with state-of-the-art methods. Furthermore, the results of a case study support our hypothesis that modes of action of drugs on target proteins are meaningful in side-effect prediction.
Inferring potential adverse drug reactions is an important and challenging task for the drug discovery and healthcare industry. Many previous studies in computational pharmacology have proposed utilizing multi-source drug information to predict drug side effects have and achieved initial success. However, most of the prediction methods mainly rely on direct similarities inferred from drug information and cannot fully utilize the drug information about the impact of protein–protein interactions (PPI) on potential drug targets. Moreover, most of the methods are designed for specific tasks. In this work, we propose a novel heterogeneous network embedding approach for learning drug representations called SDHINE, which integrates PPI information into drug embeddings and is generic for different adverse drug reaction (ADR) prediction tasks. To integrate heterogeneous drug information and learn drug representations, we first design different meta-path-based proximities to calculate drug similarities, especially target propagation meta-path-based proximity based on PPI network, and then construct a semi-supervised stacking deep neural network model that is jointly optimized by the defined meta-path proximities. Extensive experiments with three state-of-the-art network embedding methods on three ADR prediction tasks demonstrate the effectiveness of the SDHINE model. Furthermore, we compare the drug representations in terms of drug differentiation by mapping the representations into 2D space; the results show that the performance of our approach is superior to that of the comparison methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.