Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory and debilitating disease that involves the systemic imbalance of the immune network. Previous studies have shown that acupuncture can help treat RA. However, its specific mechanisms are not fully understood. Thus, the present study was designed to clarify the mechanisms of acupuncture acted on RA via immune network modulation using complete Freund's adjuvant (CFA)-induced arthritic rats. Results revealed that manual acupuncture (MA) could alleviate the inflammation and pain of infected joints. Moreover, MA could effectively stimulate the innate immune cytokines (IL-1[Formula: see text], IL-1[Formula: see text], IL-6, IL-7, IL-18, TNF-[Formula: see text]) and adaptive immunity cytokines (IL-2, IL-12, IFN-[Formula: see text], IL-4, IL-5, IL-10, IL-13, IL-17) as the main part of the immune response and repaired damage of RA. These complex immunomodulatory processes were analyzed quantitatively by cell-cell communication (CCC) networks. The CCC networks demonstrated that the immune networks were enhanced with the development of RA, while MA enhanced the immune networks in the early stage to act on RA and promoted the immune-network to a normal level at the late stage. Moreover, we found that monocyte/macrophage and endothelial cells were the key cells of innate immunity and body cells; T1, T2 and B cells were the key cells of adaptive immunity, which were also the main target cells for MA regulation.
Objectives: To investigate the effect of multi-session transcranial direct current stimulation (tDCS) over the prefrontal area, left dorsolateral prefrontal cortex (DLPFC), and bilateral fronto-temporo-parietal cortices (FTPCs) in patients with prolonged disorders of consciousness (DOC) and to examine the altered cortical interconnections using non-linear electroencephalography (EEG).Methods: In this open-label controlled study, conventional treatments were implemented in both the control and tDCS groups, together with 80 tDCS sessions only in the tDCS group. The order of tDCS targets was as follows: prefrontal area, left FTPC, right FTPC, and left DLPFC. The Coma Recovery Scale-Revised (CRS-R) and non-linear EEG index were evaluated before and after the treatment. Additionally, the modified Glasgow Outcome Scale (mGOS) was used as a follow-up evaluation at 12 months after the disease onset.Results: The CRS-R improved significantly in both groups after the treatment. However, the CRS-R and mGOS were more significantly improved in the tDCS group than in the control group. Among the cross approximate entropy (C-ApEn) indices, the local CA-PA and CA-FA under the affected painful stimulus condition and all local and remote indices of the unaffected side under the unaffected painful stimulus condition were significantly higher in the tDCS group than in the control group. Multivariate logistic regression analysis revealed that group and type were the main relevant factors based on mGOS improvement. Multivariate linear regression analysis revealed that group, CA-FA, and CU-MTU were the main relevant factors based on CRS-R improvement under the affected painful stimulus conditions, whereas only CU-MTU and CU-FPU were relevant under the unaffected painful stimulus condition.Conclusion: Multi-target and multi-session tDCS could improve the cortical connections between the primary sensorimotor and frontal cortices of the affected hemisphere and the prefrontal-parietal and temporo-parietal associative cortical networks of the unaffected hemisphere. Thus, this tDCS protocol may be used as an add-on treatment for prolonged DOC.
The induction of a coma by traumatic brain injury (TBI) is a crucial factor for poor clinical prognoses. We report that acupuncture at the hand 12 Jing-Well points (HTWP) improved consciousness and neurologic function in TBI rats. Gene chip analyses showed that HTWP acupuncture mostly activated genes modulating neuronal projections (P2rx7, P2rx3, Trpv1, Tacr1, and Cacna1d), protein secretion (Exoc1, Exoc3l1, Fgb, and Fgr), and dopamine (DA) receptor D3 (Drd3) in the ventral periaqueductal gray (vPAG), among which the expression rate of P2rx7 was the most obviously increased. Acupuncture also increased the expression and excitability of DA and P2RX7 neurons, and the DA neurons expressed P2RX7, P2RX3, and TRPV1 in the vPAG. Intracerebroventricular administration of P2RX7, P2RX3, or TRPV1 antagonists blocked acupuncture-induced consciousness, and the subsequent injection of a P2RX7 antagonist into the vPAG nucleus also inhibited this effect. Our findings provide evidence that acupuncture alleviates TBI-induced comas via DA neurons expressing P2RX7 in the vPAG, so as to reveal the cellular and molecular mechanisms of the improvement of TBI clinical outcomes by HTWP acupuncture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.