Partial melting in the continental crust may play a critical role on the behavior of continents during collision. However, the occurrence of partial melt in orogenic continental crust is not well understood. Since the temperature of the orogen is controlled by the thermal properties of constituent rocks, we measured the thermal conductivity and diffusivity of eclogite, the most important ultrahigh pressure metamorphic rocks, as a function of pressure, temperature, composition, and water content, and simulated the thermal structure of the Sulu and Himalaya-Tibet orogens in eastern and southwestern China, respectively. Our results show that the temperature at ~30-km depth beneath the orogens reaches the solidus of wet granite and phengite (~940 K), therefore, the partial melting in the orogenic continental crust is well explained. The melt may facilitate the exhumation of subducted crust, produce the low seismic-velocity zone, and cause the high-conductivity anomaly in the shallow depth of orogenic belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.