It is confirmed that China has been greening over the last two decades. Such greening and its driving factors are therefore significant for understanding the relationship between vegetation and environments. However, studies on vegetation changes and attribution analyses at the national scale are limited in China after 2000. In this study, fractional vegetation cover (FVC) data from Global Land Surface Satellite (GLASS) was used to detect vegetation change trends from 2001 to 2018, and the effects of CO2, temperature, shortwave radiation, precipitation, and land cover change (LCC) on FVC changes were quantified using generalized linear models (GLM). The results showed that (1) FVC in China increased by 14% from 2001 to 2018 with a greening rate of approximately 0.0019/year (p < 0.01), which showed an apparent greening trend. (2) On the whole, CO2, climate-related factors, and LCC accounted for 88% of FVC changes in China, and the drivers explained 82%, 89%, 90%, and 89% of the FVC changes in the Qinghai–Tibet region, northwest region, northern region, and southern region, respectively. CO2 was the major driving factor for FVC changes, accounting for 31% of FVC changes in China, indicating that CO2 was an essential factor in vegetation growth research. (3) The statistical results of pixels with land cover changes showed that LCC explained 12% of FVC changes, LCC has played a relatively important role and this phenomenon may be related to the ecological restoration projects. This study enriches the study of vegetation changes and its driving factors, and quantitatively describes the response relationship between vegetation and its driving factors. The results have an important significance for adjusting terrestrial ecosystem services.
After 2000, China’s vegetation underwent great changes associated with climate change and urbanization. Although many studies have been conducted to quantify the contributions of climate and human activities to vegetation, few studies have quantitatively examined the comprehensive contributions of climate, urbanization, and CO2 to vegetation in China’s 32 major cities. In this study, using Global Land Surface Satellite (GLASS) fractional vegetation cover (FVC) between 2001 and 2018, we investigated the trend of FVC in China’s 32 major cities and quantified the effects of CO2, urbanization, and climate by using generalized linear models (GLMs). We found the following: (1) From 2001 to 2018, the FVC in China generally illustrated an increasing trend, although it decreased in 23 and 21 cities in the core area and expansion area, respectively. (2) Night light data showed that the urban expansion increased to varying degrees, with an average increasing ratio of approximately 168%. The artificial surface area increased significantly, mainly from cropland, forest, grassland, and tundra. (3) Climate factors and CO2 were the major factors that affected FVC change. The average contributions of climate factors, CO2, and urbanization were 40.6%, 39.2%, and 10.6%, respectively. This study enriched the understanding of vegetation cover change and its influencing factors, helped to explain the complex biophysical mechanism between vegetation and environment, and guided sustainable urban development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.