The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Increasing evidence suggests that IscS, a cysteine desulfurase, provides sulfur for assembly of transient ironsulfur clusters in IscU. IscU appears to act as a scaffold and eventually transfers the assembled clusters to target proteins. However, the iron donor for the iron-sulfur cluster assembly largely remains elusive. Here we find that Escherichia coli IscU fails to assemble iron-sulfur clusters when the accessible "free" iron in solution is limited by an iron chelator sodium citrate. Remarkably, IscA, an iron-sulfur cluster assembly protein with an iron association constant of 3.0 ؋ 10 19 M ؊1 , is able to overcome the iron limitation due to sodium citrate and deliver iron for the IscS-mediated iron-sulfur cluster assembly in IscU. Substitution of the invariant cysteine residues Cys-99 or Cys-101 in IscA with serine completely abolishes the iron binding activity of the protein. The IscA mutants that fail to bind iron are unable to mediate iron delivery for the iron-sulfur cluster assembly in IscU under the limited accessible "free" iron conditions. The results suggest that IscA is capable of recruiting intracellular iron and providing iron for the iron-sulfur cluster assembly in IscU in cells in which the accessible "free" iron content is probably restricted.
Dendrite and synapse development are critical for establishing appropriate neuronal circuits, and disrupted timing of these events can alter neural connectivity. Using microarrays, we have identified a nuclear factor I (NFI)-regulated temporal switch program linked to dendrite formation in developing mouse cerebellar granule neurons (CGNs). NFI function was required for upregulation of many synapse-related genes as well as downregulation of genes expressed in immature CGNs. Chromatin immunoprecipitation analysis revealed that a central feature of this program was temporally regulated NFI occupancy of late-expressed gene promoters. Developing CGNs undergo a hyperpolarizing shift in membrane potential, and depolarization inhibits their dendritic and synaptic maturation via activation of calcineurin (CaN) (Okazawa et al., 2009). Maintaining immature CGNs in a depolarized state blocked NFI temporal occupancy of late-expressed genes and the NFI switch program via activation of the CaN/nuclear factor of activated T-cells, cytoplasmic (NFATc) pathway and promotion of late-gene occupancy by NFATc4, and these mechanisms inhibited dendritogenesis. Conversely, inhibition of the CaN/NFATc pathway in CGNs maturing under physiological nondepolarizing conditions upregulated the NFI switch program, NFI temporal occupancy, and dendrite formation. NFATc4 occupied the promoters of late-expressed NFI program genes in immature mouse cerebellum, and its binding was temporally downregulated with development. Further, NFI temporal binding and switch gene expression were upregulated in the developing cerebellum of Nfatc4 (−/−) mice. These findings define a novel NFI switch and temporal occupancy program that forms a critical link between membrane potential/CaN and dendritic maturation in CGNs. CaN inhibits the program and NFI occupancy in immature CGNs by promoting NFATc4 binding to late-expressed genes. As maturing CGNs become more hyperpolarized, NFATc4 binding declines leading to onset of NFI temporal binding and the NFI switch program.
In eukaryotic cells, transcription coupled nucleotide excision repair (TCR) is believed to be initiated by RNA polymerase II (Pol II) stalled at a lesion in the transcribed strand of a gene. Rad26, the yeast homolog of the human Cockayne syndrome group B (CSB) protein, plays an important role in TCR. Spt4, a transcription elongation factor that forms a complex with Spt5, has been shown to suppress TCR in rad26⌬ cells. Here we present evidence that Spt4 indirectly suppresses Rad26-independent TCR by protecting Spt5 from degradation and stabilizing the interaction of Spt5 with Pol II. We further found that the C-terminal repeat (CTR) domain of Spt5, which is dispensable for cell viability and is not involved in interactions with Spt4 and Pol II, plays an important role in the suppression. The Spt5 CTR is phosphorylated by the Bur kinase. Inactivation of the Bur kinase partially alleviates TCR in rad26⌬ cells. We propose that the Spt5 CTR suppresses Rad26-independent TCR by serving as a platform for assembly of a multiple protein suppressor complex that is associated with Pol II. Phosphorylation of the Spt5 CTR by the Bur kinase may facilitate the assembly of the suppressor complex. Nucleotide excision repair (NER)2 is a conserved DNA repair mechanism capable of removing a variety of helix-distorting lesions, such as UV-induced cyclobutane pyrimidine dimers (CPDs) (1). NER can be grouped into two pathways: global genomic repair (GGR), which refers to repair throughout the genome, and transcription coupled repair (TCR), which refers to a repair mechanism that is dedicated to the transcribed strand of actively transcribed genes (2). In the yeast Saccharomyces cerevisiae, Rad7, Rad16 (3), and Elc1 (4) are specifically required for GGR, but dispensable for TCR. Rad7 and Rad16 form a complex that binds specifically to UV-damaged DNA in an ATP-dependent manner and has DNA-dependent ATPase activity (5). Elc1 has been shown to be a component of a ubiquitin ligase that contains Rad7 and Rad16, and is responsible for regulating the levels of Rad4 protein in response to UV damage (6, 7). It has also been suggested that Elc1 is a component of another ubiquitin ligase complex, which contains Ela1, Cul3, and Roc1 but not Rad7 and Rad16 (8,9). The role of Elc1 in GGR may not be subsidiary to that of Rad7 and Rad16 (4).The mechanistic details of TCR are relatively well understood in Escherichia coli. The transcription repair coupling factor Mfd targets the transcribed strand for repair by recognizing a stalled RNA polymerase and actively recruiting the NER machinery to the transcription blocking lesion as it dissociates the stalled RNA polymerase (10). Conversely, the TCR mechanisms in eukaryotes appear to be extremely complicated (for reviews, see Refs. 11 and 12). In mammalian cells, Cockayne syndrome group A (CSA) and B (CSB) proteins are specifically required for TCR, but dispensable for GGR (13-16). Like its human homolog CSB, the yeast Rad26 plays an important role in TCR but is dispensable for GGR (17). Both human CSB (18) ...
The biogenesis of iron-sulphur clusters requires the co-ordinated delivery of both iron and sulphur. It is now clear that sulphur in iron-sulphur clusters is derived from L-cysteine by cysteine desulphurases. However, the iron donor for the iron-sulphur cluster assembly still remains elusive. Our previous studies indicated that Escherichia coli IscA, a member of the iron-sulphur cluster assembly machinery, is an iron-binding protein that can provide iron for the iron-sulphur cluster assembly in a proposed scaffold IscU. To determine how the iron centre in IscA is transferred for the iron-sulphur cluster assembly in IscU, we explore the mobility of the iron centre in IscA. The UV-visible and EPR measurements show that L-cysteine, but not IscU, is able to mobilize the iron centre in IscA and make the iron available for the iron-sulphur cluster assembly in IscU. Other related biological thiols such as N-acetyl-L-cysteine or reduced glutathione have no effect on the iron centre of IscA, suggesting that L-cysteine is unique in mobilizing the iron centre of IscA. Nevertheless, L-cysteine alone is not sufficient to transfer the iron from IscA to IscU. Both L-cysteine and cysteine desulphurase (IscS) are required for the IscA-mediated assembly of iron-sulphur clusters in IscU. The results suggest that L-cysteine may have two distinct functions in the biogenesis of iron-sulphur clusters: to mobilize the iron centre in IscA and to provide sulphur via cysteine desulphurase (IscS) for the iron-sulphur cluster assembly in IscU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.