Based on an L1 interpolation operator, a new high-order compact finite volume scheme is derived for the 2D multi-term time fractional sub-diffusion equation. It is shown that the difference scheme is unconditionally convergent and stable in $L_{\infty }$ L ∞ -norm. The convergence order is $O(\tau ^{2-\alpha }+h_{1}^{4}+h_{2}^{4})$ O ( τ 2 − α + h 1 4 + h 2 4 ) , where τ is the temporal step size and $h_{1}$ h 1 is the spatial step size in one direction, $h_{2}$ h 2 is the spatial step size in another direction. Two numerical examples are implemented, testifying to their efficiency and confirming their convergence order.
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo's sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction; then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.