The functionally graded honeycomb has the characteristic of light weight, low density, high impact resistance, noise reduction, and energy absorption as a kind of new composite inhomogeneous materials. It has the advantages of both functionally graded materials and honeycombs. In this paper, a functionally graded honeycomb sandwich plate with functionally graded distributed along the thickness of the plate is constructed. The equivalent elastic parameters of the functionally graded honeycomb core are given. Based on Reddy’s higher-order shear deformation theory (HSDT) and Hamilton’s principle, the governing partial differential equation of motion is derived under four simply supported boundary conditions. The natural frequencies of the graded honeycomb sandwich plate are obtained by both the Navier method from the governing equation and the finite element model. The results obtained by the two methods are consistent. Based on this, the effects of parameters and graded on the natural frequencies of the functionally graded honeycomb sandwich plate are studied. Finally, the dynamic responses of the functionally graded honeycomb sandwich plate under low-speed impacts are studied. The results obtained in this paper will provide a theoretical basis for further study of the complex dynamics of functionally graded honeycomb structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.