The following are two classical approaches to dimensionality reduction: 1. Approximating the data with a small number of features that exist in the data (feature selection). 2. Approximating the data with a small number of arbitrary features (feature extraction). We study a generalization that approximates the data with both selected and extracted features. We show that an optimal solution to this hybrid problem involves a combinatorial search, and cannot be trivially obtained even if one can solve optimally the separate problems of selection and extraction. Our approach that gives optimal and approximate solutions uses a “best first” heuristic search. The algorithm comes with both an a priori and an a posteriori optimality guarantee similar to those that can be obtained for the classical weighted A* algorithm. Experimental results show the effectiveness of the proposed approach.
Principal Component Analysis (PCA) is a classical dimensionality reduction technique that computes a low rank representation of the data. Recent studies have shown how to compute this low rank representation from most of the data, excluding a small amount of outlier data. We show how to convert this problem into graph search, and describe an algorithm that solves this problem optimally by applying a variant of the A* algorithm to search for the outliers. The results obtained by our algorithm are optimal in terms of accuracy, and are shown to be more accurate than results obtained by the current state-of-the- art algorithms which are shown not to be optimal. This comes at the cost of running time, which is typically slower than the current state of the art. We also describe a related variant of the A* algorithm that runs much faster than the optimal variant and produces a solution that is guaranteed to be near the optimal. This variant is shown experimentally to be more accurate than the current state-of-the-art and has a comparable running time.
Outlier based Robust Principal Component Analysis (RPCA) requires centering of the non-outliers. We show a “bias trick” that automatically centers these non-outliers. Using this bias trick we obtain the first RPCA algorithm that is optimal with respect to centering.
We address the problem of approximating a matrix by the linear combination of a column sparse matrix and a low rank matrix. Two variants of a heuristic search algorithm are described. The first produces an optimal solution but may be slow, as these problems are believed to be NP-hard. The second is much faster, but only guarantees a suboptimal solution. The quality of the approximation and the optimality criterion can be specified in terms of unitarily invariant norms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.