Study Design: Systematic review and meta-analysis. Objective: Percutaneous vertebroplasty (PVP) and percutaneous kyphoplasty (PKP) are minimally invasive techniques widely used for the treatment of neurologically intact osteoporotic Kümmell’s disease (KD), but which treatment is preferable remains controversial. Therefore, this study aimed to shed light on this issue. Methods: Six databases were searched for all relevant studies based on the PRISMA guidelines. Two investigators independently conducted a quality assessment, extracted the data and performed all statistical analyses. Results: Eight studies encompassing 438 neurologically intact osteoporotic KD patients met the inclusion criteria. Compared to PVP, PKP was associated with greater improvement in the short- and long-term Cobb angle [SMD = −0.37, P = 0.007; SMD = −0.34, P = 0.012], short-term anterior vertebral height [SMD = 0.43, P = 0.003] and long-term middle vertebral height [SMD = 0.57, P = 0.012] and a lower cement leakage rate [SMD = 0.50, P = 0.003] but produced more consumption (cement injection volume, operative time, fluoroscopy times, intraoperative blood loss and operation cost). However, there were no differences between the 2 procedures in the short- and long-term VAS and ODI scores, long-term anterior vertebral height, overall complications or new vertebral fractures. Conclusions: Both procedures are equally effective for neurologically intact KD in terms of the clinical outcomes, with the exception of a lower cement leakage risk and better radiographic improvement for PKP but greater resource consumption. Based on the evidence available, good clinical judgment should be exercised in the selection of patients for these procedures.
Purpose: Cervical ossification of ligamentum flavum (COLF) is a rare clinical entity which can occasionally contribute to severe myeloradiculopathy. Many orthopedists are unfamiliar with or underestimate this pathology. Therefore, a comprehensive research is obligatory to reappraise the epidemiological, radiological, clinical and histopathological characteristics of COLF-myeloradiculopathy based on synthesis of individual patient data. Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, PubMed, EMBASE, Scopus and Web of Science databases were searched for studies discussing COLF-myeloradiculopathy from the inception to December 2020. Results: A total of 94 cases from 54 studies were identified. The annual publications demonstrated a steady increase, and most reports were from Japan and China. The mean age was 58.76±13.39 years and nearly 60% of cases occurred in the 55-64 and 65-74 years age group. The male-female ratio was 1.4:1. Most cases belonged to East Asian population (60.64%). COLF predominately appeared in the lower cervical and cervicothoracic spine (76.60%) and mainly affected C4-5 (23.29%) and C5-6 (21.23%). Single-segment type ossification accounted for 62.76 and 45.45% of ossification lesions distributed bilaterally. The majority of COLF (81.1%) were spontaneous, and motor disturbance (76.4%), spinal ataxia (62.5%) and sensory disturbance (58.9%) were the most common manifestations. Histopathologically, it's a metaplastic process of endochondral ossification with the formation of mature lamellar bone which was distinguished from calcification of ligamentum flavum. About 21.28% of concurrent COLF and COPLL cases were identified as a separated group, with unique characteristics. Conclusion: COLF is an underappreciated but potentially growing pathogeny of myeloradiculopathy in aging population, though its distinct epidemiological, radiological, clinical and histopathological features are not fully supported by current evidence. However, our findings will provide several referential data for future researches to shed light on COLF.
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.