Objective: To compare the von Mises stresses of the pedicle screw system and the displacement of injured vertebrae using 3-D finite element analysis, and to evaluate the curative effect of the pedicle screw system. Methods:Finite element methods were used for biomechanical comparison of four posterior short segment pedicle screw fixation techniques. The different pedicle screw models are traditional trajectory (TT), Universal Spine System (USS), cortical bone trajectory (CBT), and CBT at the cranial level and pedicle screw (PS) at the caudal level (UP-CBT). The stress distribution of the screws and connecting rods under different working conditions and the displacement of the injured vertebrae were compared and analyzed.Results: After the pedicle screw system was fixed, the stress under vertical compression was mainly concentrated at the proximal end of the screw, while the stress was mainly concentrated on the connecting rod during flexion, extension, lateral flexion, and rotation. The TT group had the greatest stress during the flexion, extension, and left and right rotation. The UP-CBT group was most stressed when the left and right sides were flexed; the stress of the USS screw system was less than that of the other three models during flexion, lateral flexion, and rotation. The maximum von Mises stress values of pedicle screws in all exercise states were 556.2, 340.7, 458.1, and 533.4 MPa, respectively. In the USS group, the displacement of the injured vertebra was small in the flexion, and the left and right lateral flexion and the right rotation were higher than in the TT group and the CBT group. The maximum displacements of the injured vertebrae in all motion states were 1.679, 1.604, 1.752, and 1.777 mm, respectively.Conclusion: Universal Spine System pedicle screws are relatively less stressed under different working conditions, the risk of breakage is small, and the model is relatively stable; CBT screws do not exhibit better mechanical properties than conventional pedicle screws and USS pedicle screws.
Background: To study the pathogenesis of steroid-induced femoral head osteonecrosis, an ideal animal model is very important. As experimental animals, mice are beneficial for studying the pathogenesis of disease. However, there are currently few mouse models of steroid-induced femoral head osteonecrosis, and there are many questions that require further exploration and research.Purposes: The purpose of this study was to establish a new model of osteonecrosis in mice using angiotensin II (Ang II) combined with asparaginase (ASP) and dexamethasone (DEX) and to study the effects of this drug combination on femoral head osteonecrosis in mice.Methods: Male BALB/c mice (n = 60) were randomly divided into three groups. Group A (normal control, NC) was treated with physiological saline and given a normal diet. Group B (DEX + ASP, DA) was given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks). Group C (DEX + ASP + Ang II, DAA) was treated the same as group B, it was also given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks), but in the 4th and 8th weeks, subcutaneous implantation of a capsule osmotic pump (0.28 mg/kg/day Ang II) was performed. The mice were sacrificed in the 4th and 8th weeks, and the model success rate, mouse mortality rate, body weight, blood lipids, coagulation factors, histopathology, and number of local vessels in the femoral head were evaluated.Results: DAA increased the model success rate [4th week, 30% (DA) vs. 40% (DAA) vs. 0% (NC); 8th week, 40% (DA) vs. 70% (DAA) vs. 0% (NC)]. There was no significant difference in mortality rate between the groups [4th week, 0% (DA) vs. 0% (DAA) vs. 0% (NC); 8th week, 5% (DA) vs. 10% (DAA) vs. 0% (NC)]. DAA affected mouse body weight and significantly affected blood lipids and blood coagulation factors. DAA reduces the number of blood vessels in the femoral head and destroys the local blood supply.Conclusion: Angiotensin II combined with asparaginase and dexamethasone can obviously promote the necrosis of femoral head and provide a new idea for the model and treatment of osteonecrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.