TiN/HfO2/ Ce O x /TiN memristors were prepared by magnetron sputtering. To further improve their performance, the devices were rapidly thermally annealed at different temperatures for different times. Compared with those of unannealed devices, the coefficients of variation (CVs) of the set voltage ( V SET ) and the reset voltage ( V RESET ) were reduced by 35.1% and 59.4%, respectively, and the CVs of the resistances in low and high resistance states ( R LRS and R HRS ) were reduced by 70.2% and 52.7%, respectively, after annealing at 400°C for 2 min in air. Through X-ray diffraction, X-ray photoelectron spectroscopy, and I ‐ V curves of the devices before and after annealing, we propose that the combined effect of grain growth (i.e., grain boundary reduction) and decreased oxygen vacancy content in the switching film resulting from annealing is responsible for the improvement in the switching parameter distribution of TiN/HfO2/ Ce O x /TiN devices. This work presents a simple way to enhance the performance of memristors.
Volatile threshold-switching (TS) devices have been used as selectors and to simulate neurons in neural networks. It is necessary to find new ways to improve their performance. The randomness of conductive filament (CF) growth and the endurance of the devices are urgent issues at present. Here, we explored embedded Ag nanoislands (NIs) in HfO2-based TS devices to limit the position of the CF and facilitate its growth at the same time. The Au/Ag(2 nm)/HfO2(4 nm)/Ag NIs/Au volatile TS devices exhibited forming-free characteristics with improved endurance compared with the devices without Ag NIs, which was ascribed to the enhanced localization of the electrical field and increased oxygen vacancies in HfO2 induced by the Ag NIs. A mechanism was proposed to explain the volatile TS behaviors of the devices. The Ag NIs and the thickness of the HfO2 layers played key roles in whether the devices required forming. This work shows that the use of metal NIs is an effective and convenient way to improve the performance of TS devices.
Due to their unique electrical performance and simple structure, memristors exhibit excellent application prospects for future information technology. In this work, we fabricated Pt/Ti/AlOx/CeOx/Pt memristors demonstrating electroforming-free bipolar resistive switching behavior with low operating voltage (−1 to 1 V), stable endurance, and retention. Space-charge limited conduction (SCLC) as well as the formation and rupture of conductive filaments are responsible for the resistive switching behavior. Increasing the magnitude of the RESET voltage could generate multistate resistive switching. We studied the synaptic characteristics of the device by obtaining multilevel conductance states and investigating the relationship between the device resistance, pulse amplitude, pulse width, and pulse number. By applying programmed pre and postsynaptic spiking pulses, spike-timing dependent plasticity was observed. This study shows that the device is suitable for multivalue storage and can be used as an electronic synapse device in artificial neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.