In this contribution, we investigate the influence of thermal processing routes on the formability of medium Mn steel by assessing the strain hardening coefficient and anisotropy factor using the uniaxial tensile test. Medium Mn steel processed by intercritical annealing (IA) at 680 °C for 4 h demonstrates better formability than steel treated with a combination of IA at 800 °C for 10 min and quenching and partitioning (Q&P), based on the much higher strain hardening coefficient (n) and comparable anisotropy factor (r, rm, ∆r). The higher strain hardening coefficient of medium Mn steel with single IA treatment is ascribed to the enhanced transformation-induced plasticity (TRIP) effect resulting from the large amount of austenite that is transformed into martensite during deformation. In addition, the IA process allows for the production of medium Mn steel with high ductility, which is beneficial for its high formability and good ‘part ductility’ in lightweight automotive applications.
The present work simplifies the previous room-temperature quenching and partitioning (RT Q&P) process down to a single furnace cooling process, delivering a medium Mn steel with an ultimate tensile strength (UTS) of 1.7 GPa and a uniform elongation of 9.5%. The martensite tempering during furnace cooling is featured with slightly reduced dislocation density and is free of cementite precipitation, which is beneficial for ultrahigh UTS. Although the carbon partitioning is limited, the banded large austenite grains have proper mechanical stability owing to pre-existing high carbon content and the strong martensite matrix, allowing the gradual transformation-induced plasticity (TRIP) effect to enhance the work hardening behaviour and thus the good uniform elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.