As a variation of random linear network coding, segmented network coding (SNC) has attracted great interest in data dissemination over lossy networks due to its low computational cost. In order to guarantee the success of decoding, SNC can adopt a feedbackless FEC (forward error correction) approach by applying a linear block code to the input packets before segmentation at the source node. In particular, if the empirical rank distribution of transfer matrices of segments is known in advance, several classes of coded SNC can achieve close-to-optimal decoding performance. However, the empirical rank distribution in the absence of feedback has been little investigated yet, making the whole performance of the FEC approach unknown. To close this gap, in this paper, we present the first comprehensive study on the transmission scheduling issue for the FEC approach, aiming at optimizing the rank distribution of transfer matrices with little control overhead. We propose an efficient adaptive scheduling framework for coded SNC in lossy unicast networks. This framework is one-sided (i.e., each network node forwards the segments adaptively only according to its own state) and scalable (i.e., its buffer cost will not keep on growing when the number of input packets goes to infinity). The performance of the framework is further optimized based on a linear programming approach. Extensive numerical results show that our framework performs near-optimally with respect to the empirical rank distribution.Index Terms-Random linear network coding, segmented network coding, forward error correction, scheduling strategy. ! 0018-9340 (c)
Software-Defined Network (SDN) is a promising network paradigm that separates the control plane and data plane in the network. It has shown great advantages in simplifying network management such that new functions can be easily supported without physical access to the network switches. However, Ternary Content Addressable Memory (TCAM), as a critical hardware storing rules for high-speed packet processing in SDN-enabled devices, can be supplied to each device with very limited quantity because it is expensive and energy-consuming. To efficiently use TCAM resources, we propose a rule multiplexing scheme, in which the same set of rules deployed on each node apply to the whole flow of a session going through but towards different paths. Based on this scheme, we study the rule placement problem with the objective of minimizing rule space occupation for multiple unicast sessions under QoS constraints. We formulate the optimization problem jointly considering routing engineering and rule placement under both existing and our rule multiplexing schemes. Via an extensive review of the state-of-the-art work, to the best of our knowledge, we are the first to study the non-routing-rule placement problem. Finally, extensive simulations are conducted to show that our proposals significantly outperform existing solutions.
Chunked codes are efficient random linear network coding (RLNC) schemes with low computational cost, where the input packets are encoded into small chunks (i.e., subsets of the coded packets). During the network transmission, RLNC is performed within each chunk. In this paper, we first introduce a simple transfer matrix model to characterize the transmission of chunks and derive some basic properties of the model to facilitate the performance analysis. We then focus on the design of overlapped chunked codes, a class of chunked codes whose chunks are non-disjoint subsets of input packets, which are of special interest since they can be encoded with negligible computational cost and in a causal fashion. We propose expander chunked (EC) codes, the first class of overlapped chunked codes that have an analyzable performance, where the construction of the chunks makes use of regular graphs. Numerical and simulation results show that in some practical settings, EC codes can achieve rates within 91 to 97 % of the optimum and outperform the state-of-the-art overlapped chunked codes significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.