The cochlea plays an important role in the mammalian auditory system. Sound-induced cell motion in the cochlea is transformed into electrical signals that are then sent to primary auditory neurons. The most significant feature of the cochlea is the active and nonlinear amplification of faint sounds. This active process cannot be explained via a simple hydromechanical representation of the cochlea, that is, a macromechanic explanation. Although the mechanisms of this amplification are not well understood, cochlear micromechanical behavior is thought to play a significant role. The measurement of in vivo cochlea micromechanical responses is challenging and restricted by technical limitations. Modeling the micromechanics of the cochlea, however, can facilitate the interpretation of experimental observations. In this paper, we reviewed studies in which researchers modeled the cochlear micromechanics, and we discussed various modeling hypotheses, outcomes, and expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.