Revealing the variation law of thermal diffusivity of sandy soil can provide a theoretical basis for the engineering design and construction in cold and arid regions. Based on experimental data of sandy soil samples, the distribution characteristics and influence of dry density and moisture content on thermal diffusivity are analyzed in this work. Then, the prediction model based on the empirical fitting formula and RBF neural network method for thermal diffusivity of frozen and unfrozen sandy soil is established, and the prediction accuracy of different prediction methods is compared. The results show that (1) thermal diffusivity of sandy soil is positively correlated with the particle size. With the increase of sand size, thermal diffusivity of sandy soil increases significantly. (2) Partial correlation among natural moisture content, dry density, and thermal diffusivity varies with different frozen and unfrozen conditions. (3) For unfrozen sandy soil, the binary RBF neural network prediction model is obviously better than that of the binary empirical fitting formula model. (4) The ternary prediction model has significantly higher prediction accuracy than that of the binary prediction model for frozen sandy soil, and the ternary RBF neural network model has the best prediction effect among the four methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.