Most existing finger rehabilitation robots are structurally complex and cannot be adapted to multiple work conditions, such as clinical and home. In addition, there is a lack of attention to active adduction/abduction (A/A) movement, which prevents stroke patients from opening the joint in time and affects the rehabilitation process. In this paper, an end-effector finger rehabilitation robot (EFRR) with active A/A motion that can be applied to a variety of applications is proposed. First, the natural movement curve of the finger is analyzed, which is the basis of the mechanism design. Based on the working principle of the cam mechanism, the flexion/extension (F/E) movement module is designed and the details used to ensure the safety and reliability of the device are introduced. Then, a novel A/A movement module is proposed, using the components that can easily individualized design to achieve active A/A motion only by one single motor, which makes up for the shortcomings of the existing devices. As for the control system, a fuzzy proportional-derivative (PD) adaptive impedance control strategy based on the position information is proposed, which can make the device more compliant, avoid secondary injuries caused by excessive muscle tension, and protect the fingers effectively. Finally, some preliminary experiments of the prototype are reported, and the results shows that the EFRR has good performance, which lays the foundation for future work.
In the process of rehabilitation, the objectivity and the accuracy of rehabilitation assessment have an obvious impact on the follow-up training. To improve this problem, using a multi-sensor source, this paper attempts to establish a comprehensive assessment method of the finger rehabilitation effect, including three indicators of finger muscle strength, muscle fatigue degree, and range of motion. Firstly, on the basis of the fingertip pressure sensor of the End-Effector Finger Rehabilitation Robot, a mathematical model of finger muscle strength estimation was established, and the estimated muscle strength was scored using the entropy weight method. Secondly, using an sEMG signal sensor, a fatigue monitoring system was designed in the training process, and the fatigue degree was determined on the basis of the change trend of the eigenvalues of MAV and RMS. Lastly, a human–machine motion coupling model was established, and the joint range of motion acquisition and scoring model were obtained on the basis of the motor encoder. According to the above three indicators, using the AHP assessment method to establish a comprehensive rehabilitation assessment method, the effectiveness of the method was verified by experiments. This paper provides a potential new idea and method for objective, accurate, and convenient assessment of finger function rehabilitation, which is of positive significance for alleviating the burden on rehabilitation doctors and improving rehabilitation efficiency.
This paper proposes a prototype of a novel end-traction finger rehabilitation robot with flexion/extension and adduction/abduction functions. The degree of freedom (DoF) and finger joint torque of a single-finger module has been analysed, and the calculation and selection of the motor driving force are completed. Finally, the design details of the mechanism and the hardware system of the robot are illustrated. This device minimized the mechanical size to some extent by using only one motor for a single finger, which also reduces the cost and increases the possibility of industrial application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.