By trapping sediment in reservoirs, dams interrupt the continuity of sediment transport through rivers, resulting in loss of reservoir storage and reduced usable life, and depriving downstream reaches of sediments essential for channel form and aquatic habitats. With the acceleration of new dam construction globally, these impacts are increasingly widespread. There are proven techniques to pass sediment through or around reservoirs, to preserve reservoir capacity and to minimize downstream impacts, but they are not applied in many situations where they would be effective. This paper summarizes collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation. Where geometry is favorable it is often possible to bypass sediment around the reservoir, which avoids reservoir sedimentation and supplies sediment to downstream reaches with rates and timing similar to pre-dam conditions. Sluicing (or drawdown routing) permits sediment to be transported through the reservoir rapidly to avoid sedimentation during high flows; it requires relatively large capacity outlets. Drawdown flushing involves scouring and re-suspending sediment deposited in the reservoir and transporting it downstream through low-level gates in the dam; it works best in narrow reservoirs with steep longitudinal gradients and with flow velocities maintained above the threshold to transport sediment. Turbidity currents can often be vented through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, we recommend that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams.
Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favored alleles at multiple loci. However, it is unknown whether favored mutations slowly accumulate on older inversions or if young inversions spread because they capture preexisting adaptive Quantitative Trait Loci (QTLs). By genetic mapping, chromosome painting and genome sequencing we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.
Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history.
We analyze why the sediment discharges of fine-grained rivers are an order of magnitude larger than predicted by current theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.