In situ monitoring of hydrogen peroxide (HO) secreted from live cells plays a critical role in elucidating many cellular signaling pathways, and it is a significant challenge to selectively detect these low levels of endogenous HO. To address this challenge, we report the establishment of a trimetallic hybrid nanoflower-decorated MoS nanosheet-modified sensor for in situ monitoring of HO secreted from live MCF-7 cancer cells. The Au-Pd-Pt nanoflower-dispersed MoS nanosheets are synthesized by a simple wet-chemistry method, and the resulting nanosheet composites exhibit significantly enhanced catalytic activity toward electrochemical reduction of HO, due to the synergistic effect of the highly dispersed trimetallic hybrid nanoflowers and the MoS nanosheets, thereby resulting in ultrasensitive detection of HO with a subnanomolar level detection limit in vitro. Also the immobilization of the laminin glycoproteins on the surface of the nanocomposites increases its biocompatibility for cell adhesion and growth, which enables in situ electrochemical monitoring of HO directly secreted from live cells for potential application of such sensor in cellular biology, clinical diagnosis, and pathophysiology.
The detection of microRNA expression profiles plays an important role in early diagnosis of different cancers. On the basis of the employment of redox labels with distinct potential positions and duplex specific nuclease (DSN)-assisted target recycling signal amplifications, we have developed a multiplexed and convenient electronic sensor for highly sensitive detection of microRNA (miRNA)-141 and miRNA-21. The sensor is constructed by self-assembly of thiol-modified, redox species-labeled hairpin probes on the gold sensing electrode. The hybridizations between the target miRNAs and the surface-immobilized probes lead to the formation of RNA/DNA duplexes, and DSN subsequently cleaves the redox-labeled hairpin probes of the RNA/DNA duplexes to recycle the target miRNAs and to generate significantly amplified current suppression at different potentials for multiplexed detection of miRNA-141 and miRNA-21 down to 4.2 and 3.0 fM, respectively. The sensor is also highly selective toward the target miRNAs and can be employed to monitor miRNAs from human prostate carcinoma (22Rv1) and breast cancer (MCF-7) cell lysates simultaneously. The sensor reported here thus holds great potential for the development of multiplexed, sensitive, selective, and simple sensing platforms for simultaneous detection of a variety of miRNA biomarkers for clinic applications with careful selection of the labels.
The identification and monitoring of circulating tumor cells (CTCs) in human blood plays a pivotal role in the convenient diagnosis of different cancers. However, it remains a major challenge to monitor these CTCs because of their extremely low abundance in human blood. Here, we describe the synthesis of a new aptamer-functionalized and gold nanoparticle (AuNP) array-decorated magnetic graphene nanosheet recognition probe to capture and isolate rare CTCs from human whole blood. In addition, by employing the aptamer/electroactive species-loaded AuNP signal amplification probes, multiplexed electrochemical detection of these low levels of CTCs can be realized. The incubation of the probes with the sample solutions containing the target CTCs can lead to the efficient separation of the CTCs and result in the generation of two distinct voltammetric peaks on a screen-printed carbon electrode, whose potentials and current intensities, respectively, reflect the identity and number of CTCs for the multiplexed detection of the Ramos and CCRF-CEM cells with detection limits down to 4 and 3 cells mL–1. With the successful demonstration of the concept, further extension of the developed sensing strategy for the determination of various CTCs in human whole blood for the screening of different cancers can be envisioned in the near future.
The variations in microRNA (miRNA) expression levels can be useful biomarkers for the diagnosis of different cancers. In this work, on the basis of a new miRNA-triggered molecular machine for enzyme-free target recycling signal amplification, the development of a simple electronic sensor for highly sensitive detection of miRNA-21 from human breast cancer cells is described. The three-stand DNA duplex probes are self-assembled on the gold electrode surface to fabricate the sensor. The miRNA-21 target binds to the terminal toehold region of the probes, displaces one of the short strands through toehold-mediated strand displacement reactions, and exposes the secondary toehold region for subsequent hybridization with the methylene blue (MB)-modified DNA fuel strand, which further displaces both the miRNA-21 target and the other short strand to activate the operation of the molecular machine. As a result, the miRNA-21 target is cyclically reused, and many MB-DNA fuel strands are attached to the sensor surface, leading to a significantly amplified current response for sensitive detection of miRNA-21 down to 1.4 fM. The developed sensor also shows high sequence discrimination capability and can be used to monitor miRNA-21 expression levels in cancer cells. Moreover, this sensor avoids the involvement of any enzymes for target recycling amplification and features with highly minimized background noise for miRNA detection, which makes this method hold great potential for convenient monitoring of different miRNA biomarkers for early diagnosis of various cancers.
On the basis of the use of silver nanoclusters (AgNCs) in situ synthesized by cytosine (C)-rich loop DNA templates as signal amplification labels, the development of a label-free and highly sensitive method for electrochemical detection of microRNA (miRNA-199a) is described. The target miRNA-199a hybridizes with the partial dsDNA probes to initiate the target-assisted polymerization nicking reaction (TAPNR) amplification to produce massive intermediate sequences, which can be captured on the sensing electrode by the self-assembled DNA secondary probes. These surface-captured intermediate sequences further trigger the hybridization chain reaction (HCR) amplification to form dsDNA polymers with numerous C-rich loop DNA templates on the electrode surface. DNA-templated synthesis of AgNCs can be realized by subsequent incubation of the dsDNA polymer-modified electrode with AgNO3 and sodium borohydride. With this integrated TAPNR and HCR dual amplification strategy, the amount of in situ synthesized AgNCs is dramatically enhanced, leading to substantially amplified current response for highly sensitive detection of miRNA-199a down to 0.64 fM. In addition, the developed method also shows high selectivity toward the target miRNA-199a. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective, and simple detection of different types of microRNA targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.