Recently, single nucleotide polymorphisms in let-7 miRNA binding site in 3' untranslated region (UTR) of KRAS mRNA have been found to be associated with the cancer risk. In this study, we genotyped the frequency of KRAS rs712 to test its effect on gastric cancer (GC) risk in a hospital-based case-control study in a Chinese population, with 181 histologically confirmed GC patients and 674 cancer-free controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The TT genotype of rs712 was associated with an increased risk of GC when taking GG genotype as a reference (adjusted odds ratio (OR) = 3.05, 95 % confidence interval (CI), 1.53-6.08). Similarly, the T allele of rs712 was associated with a statistically significant increase in susceptibility compared with G allele (adjusted OR = 1.44, 95 % CI, 1.10-1.90). Our data demonstrated that the T allele of the let-7 binding site polymorphism rs712 in KRAS 3' UTR was associated with a significantly increased risk of GC, suggesting that the KRAS rs712 polymorphism may be a genetic marker for the development of GC.
Here, we showed the antibiotic salinomycin (SAL) combined with GEF exerted synergistic cytotoxicity effects in colorectal cancer cells irrespective of their EGFR and KRAS status, with a relatively low toxicity to normal cells. Additionally, combination of the two drugs overcame Ras-induced resistance and the acquired resistance to GEF. Further, we identified a new potential mechanism of this cooperative interaction by showing that GEF and SAL acted together to enhance production of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP) and lysosomal membrane potential (LMP). And the ROS contributed the loss of MMP and LMP. We also found that GEF and SAL acted in concert to induce apoptosis via a mitochondrial-lysosomal cross-talk and caspase-independent pathway triggered by cathepsin B and D. Lastly, SAL in combination with GEF sensitized GEF-resistant cells to GEF in a nude mouse xenograft model. This novel combination treatment might provide a potential clinical application to overcome GEF resistance in colorectal cancer.
Our data suggest that the pathogenesis of CRC maybe mediated by FOXM1, and FOXM1 could represent selective targets for the molecularly targeted treatments of CRC.
ABSTRACT. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules of about 22 nucleotides in length. miRNAs are highly conserved in both plants and animals, and function as gene regulators by binding to the 3'-untranslated region of target mRNAs for cleavage and/ or translational repression. miRNA biogenesis, stability, and regulation of expression are strongly sequence dependent. Sequence variants, such as single nucleotide polymorphisms (SNPs) in pri-miRNA, pre-miRNA, promoter regions, or miRNA-target sites, can influence miRNA function, thereby contributing to the pathological features of human disease. In this review, we focus on miRNA-related SNPs in gastric cancer and comprehensively analyze some commonly studied SNPs.
The incidence of colorectal cancer is on the increase owing to changes in daily diet. In the present study, the methylation status of caudal type homeobox transcription factor 2 (CDX2) gene in lesion tissue of colorectal cancer (CRC) was investigated. Additionally, the correlation between the promoter methylation of CDX2 gene, CRC and gene expression in patients with CRC and normal population was examined. Between April 2014 and May 2015 78 cases with CRC were enrolled in the study. Using methylation-specific polymerase chain reaction (PCR), the promoter methylation of CDX2 in normal tissues and colorectal tissues was examinned. Through the fluorescence quantitative PCR technique, the expression levels of CDX2 gene were determined in a normal population and lesion tissue of patients with CRC. At the same time, we evaluated the levels of the CDX2 gene product in the normal population and lesion tissue of patients with CRC. The results showed that the methylation rate of the promoter region of CDX2 gene in normal colorectal tissue was 43.5%, whereas that in the lesion tissue of CRC was 78.5%. The result was statistically significant (P<0.05). The quantity of mRNA and protein expression of CDX2 gene in colorectal and normal tissue was significantly different (P<0.05). In conclusion, the methylation of the CDX2 gene promoter region was associated with risk of CRC, i.e., methylation of the promoter region of CDX2 gene favors the occurrence of CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.