The conversion of skeletal muscle fiber from fast-twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Dietary garcinol significantly downregulated (p < 0.05) fast myosin heavy chain (MyHC) expression and upregulated (p < 0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (p < 0.05) the activity of peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) and markedly decreased (p < 0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (p < 0.05) lactate dehydrogenase activity and increased (p < 0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of C2C12 myotubes showed that garcinol treatment increased (p < 0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (p < 0.05) the expression of fast MyHC but increased (p < 0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (p < 0.05). Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
Short chain fatty acids (SCFAs) produced by gut microbiota affected hepatic glucose metabolism via the gut-liver axis. The present study aimed to investigate the effects of butyrate produced by gut...
Background The conversion of skeletal muscle fiber from fast twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Methods Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Results Dietary garcinol significantly downregulated (P<0.05) fast MyHC expression and upregulated (P<0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (P<0.05) the activity of PGC-1α and markedly decreased (P<0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (P<0.05) lactate dehydrogenase activity and increased (P<0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of immunostaining C2C12 myotubes showed that garcinol treatment increased (P<0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (P<0.05) the expression of fast MyHC but increased (P<0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (P<0.05). Conclusion Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.