Direct removal of 99 TcO 4 – from alkaline nuclear waste is desirable because of the nuclear waste management and environmental protection relevant to nuclear energy but is yet to be achieved given that combined features of decent base-resistance and high uptake selectivity toward anions with low charge density have not been integrated into a single anion-exchange material. Herein, we proposed a strategy overcoming these challenges by rationally modifying the imidazolium unit of a cationic polymeric network (SCU-CPN-4) with bulky alkyl groups avoiding its ring-opening reaction induced by OH – because of the steric hindrance effect. This significantly improves not only the base-resistance but also the affinity toward TcO 4 – as a result of enhanced hydrophobicity, compared to other existing anion-exchange materials. More importantly, SCU-CPN-4 exhibits record high uptake selectivity, fast sorption kinetics, sufficient robustness, and promising reusability for removing 99 TcO 4 – from the simulated high-level waste stream at the U.S. Savannah River Site, a typical alkaline nuclear waste, in both batch experiment and dynamic column separation test for the first time.
The major enteric RNA viruses in pigs include porcine epidemic diarrhoea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus A (PRV‐A), porcine kobuvirus (PKV), porcine sapovirus (PSaV) and porcine deltacoronavirus (PDCoV). For differential diagnosis, a multiplex RT‐PCR method was established on the basis of the N genes of TGEV, PEDV and PDCoV, the VP7 gene of PRV‐A, and the polyprotein genes of PKV and PSaV. This multiplex RT‐PCR could specifically detect TGEV, PEDV, PDCoV, PRV‐A, PKV and PSaV without cross‐reaction to any other major viruses circulating in Chinese pig farms. The limit of detection of this method was as low as 100–101 ng cDNA of each virus. A total of 398 swine faecal samples collected from nine provinces of China between October 2015 and April 2017 were analysed by this established multiplex RT‐PCR. The results demonstrated that PDCoV (144/398), PSaV (114/398), PEDV (78/398) and PRV‐A (70/398) were the main pathogens, but TGEV was not found in the pig herds in China. In addition, dual infections, for example, PDCoV + PSaV, PDCoV + PRV‐A, PRA‐V + PSaV and PEDV + PDCoV, and triple infections, for example, PDCoV + PRV‐A + PSaV and PEDV + PDCoV + PKV, were found among the collected samples. The multiplex RT‐PCR provided a valuable tool for the differential diagnosis of swine enteric viruses circulating in Chinese pig farms and will facilitate the prevention and control of swine diarrhoea in China.
The development of biocompatible nanomaterials for smart drug delivery and bioimaging has attracted great interest in recent years in biomedical fields. Here, the interaction between the recently reported nitrogenated graphene (C N) and a prototypical protein (villin headpiece HP35) utilizing atomistic molecular dynamics simulations is studied. The simulations reveal that HP35 can form a stable binding with the C N monolayer. Although the C N-HP35 attractive interactions are constantly preserved, the binding strength between C N and the protein is mild and does not cause significant distortion in the protein's structural integrity. This intrinsic biofriendly property of native C N is distinct from several widely studied nanomaterials, such as graphene, carbon nanotubes, and MoS , which can induce severe protein denaturation. Interestingly, once the protein is adsorbed onto C N surface, its transverse migration is highly restricted at the binding sites. This restriction is orchestrated by C N's periodic porous structure with negatively charged "holes," where the basic residues-such as lysine-can form stable interactions, thus functioning as "anchor points" in confining the protein displacement. It is suggested that the mild, immobilized protein attraction and biofriendly aspects of C N would make it a prospective candidate in bio- and medical-related applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.