Ferroptosis is a novel form of cell death precisely regulated by iron metabolism, antioxidant processes, and lipid metabolism that plays an irreplaceable role in the development of many diseases. Musculoskeletal disorders (MSKs), including osteoporosis, osteoarthritis, rheumatoid arthritis, intervertebral disc degeneration, sarcopenia, and rhabdomyolysis, have become one of the most common causes of disability and a major burden on public health and social care systems. The mechanism of ferroptosis in MSKs has recently been elucidated. In this review, we briefly introduce the ferroptosis mechanism and illustrate the pathological roles of ferroptosis in MSKs with a focus on how ferroptosis can be exploited as a promising treatment strategy. Notably, because the toxicity of compounds that inhibit or induce ferroptosis in other organs is largely unknown, ferroptosis appears to be a double-edged sword. We point out that more research is needed in the future to verify the therapeutic effects based on ferroptosis in MSKs.
Background: Oxidative stress (OS) is associated with ferroptosis. Coenzyme Q10 (CoQ10), as an adjuvant treatment, has shown to be beneficial against OS. However, the efficacy of CoQ10 as a therapeutic agent against OS has not been promptly updated and systematically investigated.Methods: A systematic literature search was performed using the Medline, EMBASE, Web of science, Cochrane Central Register of Controlled Trials, CNKI, CBM, Science direct and clinical trial. gov to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model.Results: Twenty-one randomized clinical studies met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation increased the levels of antioxidant enzymes [including superoxide dismutase (SOD) (SMD = 0.63; 95% CI: 0.38 to 0.88; p < 0.001), catalase (CAT) (SMD = 0.44; 95% CI:0.16 to 0.72; p = 0.002)] significantly and the levels of malondialdehyde (MDA) (SMD = -0.68; 95% CI: 0.93 to -0.43; p < 0.001) was decreased considerably. However, significant associations were not observed between this supplement and total antioxidant capacity (TAC), glutathione peroxidase (GPx) activity.Conclusion: CoQ10 can improve OS as indicated by statistical significance in CAT and MDA concentrations, as well as SOD activity. Future studies focusing on long-term results and specific valuation of OS parameters are required to confirm the efficacy of CoQ10 on OS. We also believe that with the further research on ferroptosis, CoQ10 will gain more attention.Systematic Review Registration: [https://inplasy.com/], identifier [INPLASY2021120123].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.