The model and algorithm of BP neural network optimized by expanded multichain quantum optimization algorithm with super parallel and ultra-high speed are proposed based on the analysis of the research status quo and defects of BP neural network to overcome the defects of overfitting, the random initial weights, and the oscillation of the fitting and generalization ability along with subtle changes of the network parameters. The method optimizes the structure of the neural network effectively and can overcome a series of problems existing in the BP neural network optimized by basic genetic algorithm such as slow convergence speed, premature convergence, and bad computational stability. The performance of the BP neural network controller is further improved. The simulation experimental results show that the model is with good stability, high precision of the extracted parameters, and good real-time performance and adaptability in the actual parameter extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.