Motion blur recovery is a common method in the field of remote sensing image processing that can effectively improve the accuracy of detection and recognition. Among the existing motion blur recovery methods, the algorithms based on deep learning do not rely on a priori knowledge and, thus, have better generalizability. However, the existing deep learning algorithms usually suffer from feature misalignment, resulting in a high probability of missing details or errors in the recovered images. This paper proposes an end-to-end generative adversarial network (SDD-GAN) for single-image motion deblurring to address this problem and to optimize the recovery of blurred remote sensing images. Firstly, this paper applies a feature alignment module (FAFM) in the generator to learn the offset between feature maps to adjust the position of each sample in the convolution kernel and to align the feature maps according to the context; secondly, a feature importance selection module is introduced in the generator to adaptively filter the feature maps in the spatial and channel domains, preserving reliable details in the feature maps and improving the performance of the algorithm. In addition, this paper constructs a self-constructed remote sensing dataset (RSDATA) based on the mechanism of image blurring caused by the high-speed orbital motion of satellites. Comparative experiments are conducted on self-built remote sensing datasets and public datasets as well as on real remote sensing blurred images taken by an in-orbit satellite (CX-6(02)). The results show that the algorithm in this paper outperforms the comparison algorithm in terms of both quantitative evaluation and visual effects.
Drone and aerial remote sensing images are widely used, but their imaging environment is complex and prone to image blurring. Existing CNN deblurring algorithms usually use multi-scale fusion to extract features in order to make full use of aerial remote sensing blurred image information, but images with different degrees of blurring use the same weights, leading to increasing errors in the feature fusion process layer by layer. Based on the physical properties of image blurring, this paper proposes an adaptive multi-scale fusion blind deblurred generative adversarial network (AMD-GAN), which innovatively applies the degree of image blurring to guide the adjustment of the weights of multi-scale fusion, effectively suppressing the errors in the multi-scale fusion process and enhancing the interpretability of the feature layer. The research work in this paper reveals the necessity and effectiveness of a priori information on image blurring levels in image deblurring tasks. By studying and exploring the image blurring levels, the network model focuses more on the basic physical features of image blurring. Meanwhile, this paper proposes an image blurring degree description model, which can effectively represent the blurring degree of aerial remote sensing images. The comparison experiments show that the algorithm in this paper can effectively recover images with different degrees of blur, obtain high-quality images with clear texture details, outperform the comparison algorithm in both qualitative and quantitative evaluation, and can effectively improve the object detection performance of blurred aerial remote sensing images. Moreover, the average PSNR of this paper’s algorithm tested on the publicly available dataset RealBlur-R reached 41.02 dB, surpassing the latest SOTA algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.