BackgroundIt is a challenge to reduce the muscular discoordination in the paretic upper limb after stroke in the traditional rehabilitation programs.MethodIn this study, a neuromuscular electrical stimulation (NMES) and robot hybrid system was developed for multi-joint coordinated upper limb physical training. The system could assist the elbow, wrist and fingers to conduct arm reaching out, hand opening/grasping and arm withdrawing by tracking an indicative moving cursor on the screen of a computer, with the support from the joint motors and electrical stimulations on target muscles, under the voluntary intention control by electromyography (EMG). Subjects with chronic stroke (n = 11) were recruited for the investigation on the assistive capability of the NMES-robot and the evaluation of the rehabilitation effectiveness through a 20-session device assisted upper limb training.ResultsIn the evaluation, the movement accuracy measured by the root mean squared error (RMSE) during the tracking was significantly improved with the support from both the robot and NMES, in comparison with those without the assistance from the system (P < 0.05). The intra-joint and inter-joint muscular co-contractions measured by EMG were significantly released when the NMES was applied to the agonist muscles in the different phases of the limb motion (P < 0.05). After the physical training, significant improvements (P < 0.05) were captured by the clinical scores, i.e., Modified Ashworth Score (MAS, the elbow and the wrist), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT).ConclusionsThe EMG-driven NMES-robotic system could improve the muscular coordination at the elbow, wrist and fingers.Trial registrationClinicalTrials.gov. NCT02117089; date of registration: April 10, 2014
Benzotriazole, 2,5-dimethoxytetrahydrofuran, and (S)-phenylglycinol in one step gave 80% of (3S, 5R,7aR)-5-(benzotriazol-1-yl)-3-phenyl-[2,1-b]oxazolopyrrolidine (6), whose crystal structure was confirmed by X-ray crystallography. Novel chiral pyrrolidine synthon 6 reacts with organosilicon (allyltrimethylsilanes and vinyloxytrimethylsilanes), organophosphorus, organozinc, and Grignard reagents to afford chiral 2-substituted and 2,5-disubstituted pyrrolidines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.