Arsenic is extremely abundant in the Earth’s crust and is one of the most common environmental pollutants in nature. In the natural water environment and surface soil, arsenic exists mainly in the form of trivalent arsenite (As(III)) and pentavalent arsenate (As(V)) ions, and its toxicity can be a serious threat to human health. In order to manage the increasingly serious arsenic pollution in the living environment and maintain a healthy and beautiful ecosystem for human beings, it is urgent to conduct research on an efficient sensing method suitable for the detection of As(III) ions. Electrochemical sensing has the advantages of simple instrumentation, high sensitivity, good selectivity, portability, and the ability to be analyzed on site. This paper reviews various electrode systems developed in recent years based on nanomaterials such as noble metals, bimetals, other metals and their compounds, carbon nano, and biomolecules, with a focus on electrodes modified with noble metal and metal compound nanomaterials, and evaluates their performance for the detection of arsenic. They have great potential for achieving the rapid detection of arsenic due to their excellent sensitivity and strong interference immunity. In addition, this paper discusses the relatively rare application of silicon and its compounds as well as novel polymers in achieving arsenic detection, which provides new ideas for investigating novel nanomaterial sensing. We hope that this review will further advance the research progress of high-performance arsenic sensors based on novel nanomaterials.
Currently, heavy metal ion pollution in water is becoming more and more common, especially As (III), which is a serious threat to human health. In this experiment, a glassy carbon electrode modified with Fe3O4/MoS2 nanocomposites was used to select the square wave voltammetry (SWV) electrochemical detection method for the detection of trace As (III) in water. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that Fe3O4 nanoparticles were uniformly attached to the surface of MoS2 and were not easily agglomerated. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that Fe3O4/MoS2 has higher sensitivity and conductivity. After optimizing the experimental conditions, the Fe3O4/MoS2-modified glassy carbon electrode exhibited high sensitivity (3.67 μA/ppb) and a low detection limit (0.70 ppb), as well as excellent interference resistance and stability for As (III).
Currently, heavy metal ion contamination in water is becoming more and more common, especially Pb(II), which is a serious threat to human health. In this experiment, MoS2/rGO nanocomposites were used to modify glassy carbon electrodes and square wave voltammetry(SWV) electrochemical detection method was selected to detect trace Pb(II) in water. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that MoS2 nanoparticles were uniformly distributed on the rGO films. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that MoS2/rGO has higher sensitivity and conductivity. After determining the optimal experimental parameters, the MoS2/rGO modified glassy carbon electrodes exhibited high sensitivity (57.57 μA μM−1) and low limit of detection (0.060 μM) for Pb(II) as well as good interference resistance and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.