We present a rigorous mathematical treatment of the zero-field orbital magnetic susceptibility of a non-interacting Bloch electron gas, at fixed temperature and density, for both metals and semiconductors/insulators. In particular, we obtain the Landau-Peierls formula in the low temperature and density limit as conjectured by T. Kjeldaas and W. Kohn in 1957.
This paper is a part of an ongoing study on the diamagnetic behavior of a 3-dimensional quantum gas of non-interacting charged particles subjected to an external uniform magnetic field together with a random electric potential. We prove the existence of an almost-sure non-random thermodynamic limit for the grand-canonical pressure, magnetization and zero-field orbital magnetic susceptibility. We also give an explicit formulation of these thermodynamic limits. Our results cover a wide class of physically relevant random potentials which model not only crystalline disordered solids, but also amorphous solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.