Glioma, the most common cancer of the central nervous system, has very poor prognosis and no effective treatment. It has been shown that activated microglia/macrophages in the glioma tumor microenvironment support progression. Hence, inhibition of the supporting effect of these cells may constitute a useful therapeutic approach. Recently, using a syngeneic mouse glioma progression model, we showed that the ectoenzyme CD38 regulated microglia activation and, in addition, that the loss of CD38 from the tumor microenvironment attenuated glioma progression and prolonged the life span of the tumor-bearing mice. These studies, which employed wild-type (WT) and Cd38 2/2 C57BL/6J mice, suggest that inhibition of CD38 in glioma microenvironment may be used as a new therapeutic approach to treat glioma. Our study tested this hypothesis. Initially, we found that the natural anthranoid, 4,5-dihydroxyanthraquinone-2-carboxylic acid (rhein), and its highly water-soluble tri-potassium salt form (K-rhein) are inhibitors of CD38 enzymatic (nicotinamide adenine dinucleotide glycohydrolase) activity (IC 50 5 1.24 and 0.84 lM, respectively, for recombinant mouse CD38). Treatment of WT, but not Cd38 2/2 microglia with rhein and K-rhein inhibited microglia activation features known to be regulated by CD38 (lipopolysaccharide/IFN-c-induced activation, induced cell death and NO production). Furthermore, nasal administration of K-rhein into WT, but not Cd38 2/2 C57BL/6J, mice intracranially injected with GL261 cells substantially and significantly inhibited glioma progression. Hence, these results serve as a proof of concept, demonstrating that targeting CD38 at the tumor microenvironment by small-molecule inhibitors of CD38, for example, K-rhein, may serve as a useful therapeutic approach to treat glioma.
The outgrowth of primary melanoma, the deadliest skin cancer, and generation of metastasis is supported by the tumor microenvironment (TME) which includes non-cancerous cells. Since the TME plays an important role in melanoma pathogenesis, its targeting is a promising therapeutic approach. Thus, it is important to identify proteins in the melanoma TME that may serve as therapeutic targets. Here we show that the nicotinamide adenine dinucleotide glycohydrolase CD38 is a suitable target for this purpose. Loss of CD38 in the TME as well as inhibition of its enzymatic activity restrained outgrowth of primary melanoma generated by two transplantable models of melanoma, B16F10 and Ret-mCherry-sorted (RMS) melanoma cells. Pathological analysis indicated that loss of CD38 increased cell death and reduced the amount of cancer-associated fibroblasts (CAFs) and blood vessels. Importantly, in addition to inhibiting outgrowth of primary melanoma tumors, loss of CD38 also inhibited spontaneous occurrence of RMS pulmonary and brain metastasis. The underlying mechanism may involve, at least in the brain, inhibition of metastasis expansion, since loss of CD38 inhibited the outgrowth of B16F10 and RMS brain tumors that were generated by direct intracranial implantation. Collectively, our results suggest that targeting CD38 in the melanoma TME provides a new therapeutic approach for melanoma treatment.
Cationic amphiphiles are alarge and diverse class of antimicrobial agents.
Although aminoglycoside antibiotics are effective against Gram-negative infections, these drugs often cause irreversible hearing damage. Binding to the decoding site of the eukaryotic ribosomes appears to result in ototoxicity, but there is evidence that other effects are involved. Here, we show how chemical modifications of apramycin and geneticin, considered among the least and most toxic aminoglycosides, respectively, reduce auditory cell damage. Using molecular dynamics simulations, we studied how modified aminoglycosides influence the essential freedom of movement of the decoding site of the ribosome, the region targeted by aminoglycosides. By determining the ratio of a protein translated in mitochondria to that of a protein translated in the cytoplasm, we showed that aminoglycosides can paradoxically elevate rather than reduce protein levels. We showed that certain aminoglycosides induce rapid plasma membrane permeabilization and that this nonribosomal effect can also be reduced through chemical modifications. The results presented suggest a new paradigm for the development of safer aminoglycoside antibiotics.
Primary and metastatic melanoma progression are supported by a local microenvironment comprising, inter alia , of cancer-associated fibroblasts (CAFs). We previously reported in orthotropic/syngeneic mouse models that the stromal ectoenzyme CD38 participates in melanoma growth and metastasis. The results presented here suggest that CD38 is a novel regulator of CAFs’ pro-tumorigenic functions. Orthotopic co-implantation of CD38 deficient fibroblasts and B16F10 melanoma cells limited tumor size, compared to CD38 expressing fibroblasts. Intrinsically, CAF-CD38 promoted migration of primary fibroblasts toward melanoma cells. Further, in vitro paracrine effects of CAF-CD38 fostered tumor cell migration and invasion as well as endothelial cell tube formation. Mechanistically, we report that CAF-CD38 drives the protein expression of an angiogenic/pro-metastatic signature, which includes VEGF-A, FGF-2, CXCL-12, MMP-9 and HGF. Data suggest that CAF-CD38 fosters tumorigenesis by enabling the production of pro-tumoral factors that promote cell invasion, migration and angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.