In this work we study numerically the three-dimensional turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides and others based on carbon.The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard turbulence model ? - ?. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers.The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.
Purpose The purpose of this study is to investigate the impact of the oscillatory movement on heat transfer within a double periodic lid-driven cubic enclosure filled with copper-water nanofluid and to figure out how the oscillations impact the fluid flow and thermal behavior inside the enclosure. The authors asserted that this study will help to improve the heat transfer efficiency and the thermal performance of various technical engineering equipments. Design/methodology/approach The cubic enclosure is heated differentially; the left side is cold, the right one is warm and the remaining walls are insulated. Based on the movement directions of the upper and bottom lids, two cases for lid-driven walls are examined (Case 1: same movement for both lids; Case 2: opposite movement for the lids). The finite volume approach was implemented to solve the time-dependent three-dimensional momentum and energy equations, adopting the power low as a scheme of resolution. The numerical study was carried out for a range of parameters: volume fraction (0 ≤ φ ≤ 0.06), Richardson number (0.1 ≤ Ri ≤ 10), non-dimensional lid frequency (2π/50 ≤ Ω ≤ 2π/10) and fixed Grashof number 105. Findings The numerical simulations were executed for two different cases of the direction of the motion of the oscillatory lids. Based on the findings obtained, decreasing the Richardson number with low lids frequency gives the best heat transfer enhancement for both cases. Furthermore, in the same conditions, swapping from Case 2 to Case 1 leads to enhancing the maximum average Nusselt number obtained by 29.74%. At a high Richardson number, using high lids frequency increases the heat transfer rate compared to using low lids frequency (an enhancement of 4.32% for Case 1 and 3.63% for Case 2). The best heat transfer rate was established for Case 1 when the lids move positively, transporting the cold flow to the hot side. In all cases, increasing the concentration of nanoparticles improves the heat transfer. Originality/value The current study gives an understanding of the problem of mixed convection in a cubic enclosure with oscillatory walls, which has received little attention. And also, there has been no study published on unsteady mixed convection within a double oscillatory lid-driven cavity.
In this work we study numerically the turbulent natural convection of nanofluids (water + AL2O3 / NTC / Cu) in rectangular cavities differentially heated. The objective is to compare the effect of the macrostructural aspect of the rectangular cavity and the effect of the types of nanofluids studied on the thermal exchange by turbulent natural convection in this type of geometry. Therefore, we have numerically treated the cases of these three nanofluids, for different particles volume fractions (0≤ Ф ≤ 0.06) and for different form ratios of the rectangular cavity. The standard κε turbulence model is used to take into account the effects of turbulence. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of streamlines and isothermal lines. The variation of the average Nusselt number is calculated as a function of the types of nanoparticles, of theirs particles volume fractions Ф, for different form ratios of the cavity and for different Rayleigh numbers. The results show that the average Nusselt number is greater as the form ratio is large and that the effect of the use of carbon nanotubes (CNT) in suspension in a water prevails for voluminal fractions and large Rayleigh numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.