<div align="left"><span>Path planning or finding a collision-free path for mobile robots between starting position and its destination is a critical problem in robotics. This study is concerned with the multi objective optimization path planning problem of autonomous mobile robots with moving targets in dynamic environment, with three objectives considered: path security, length and smoothness. Three modules are presented in the study. The first module is to combine particle swarm optimization algorithm (PSO) with bat algorithm (BA). The purpose of PSO is to optimize two important parameters of BA algorithm to minimize distance and smooth the path. The second module is to convert the generated infeasible points into feasible ones using a new local search algorithm (LS). The third module obstacle detection and avoidance (ODA) algorithm is proposed to complete the path, which is triggered when the mobile robot detects obstacles in its field of vision. ODA algorithm based on simulating human walking in a dark room. Several simulations with varying scenarios are run to test the validity of the proposed solution. The results show that the mobile robots are able to travel clearly and completely safe with short path, proving the effectiveness of this method.</span><span> </span> </div>
Path planning algorithms are the most significant area in the robotics field. Path planning (PP) can be defined as the process of determining the most appropriate navigation path before a mobile robot moves. Path planning optimization refers to finding the optimal or near-optimal path. Multi-objective optimization (MOO) is concerned with finding the best solution values that satisfy multiple objectives, such as shortness, smoothness, and safety. MOO present the challenge of making decisions while balancing these contradictory issues through compromise (tradeoff). As a result, there is no single solution appropriate for all purposes in MOO, but rather a range of solutions. Several objectives are considered as part of this study, including path security, length, and smoothness, when planning paths for autonomous mobile robots in a dynamic environment with a moving target. Particle swarm optimization (PSO) algorithms are combined with bat algorithms (BA) to make a balance between exploration and exploitation. PSO algorithms used to optimize two important parameters of the bat algorithm. The proposed solution is tested through several simulations based on varying scenarios. The results demonstrate that mobile robots can travel clearly and safely along short paths and smoothly, proving this method's efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.