During T cell activation, the engagement of a T cell with an antigen-presenting cell (APC) results in rapid cytoskeletal rearrangements and a dramatic increase of intracellular calcium (Ca(2+)) concentration, downstream to T cell antigen receptor (TCR) ligation. These events facilitate the organization of an immunological synapse (IS), which supports the redistribution of receptors, signaling molecules and organelles towards the T cell-APC interface to induce downstream signaling events, ultimately supporting T cell effector functions. Thus, Ca(2+) signaling and cytoskeleton rearrangements are essential for T cell activation and T cell-dependent immune response. Rapid release of Ca(2+) from intracellular stores, e.g. the endoplasmic reticulum (ER), triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels, residing in the plasma membrane. These channels facilitate a sustained influx of extracellular Ca(2+) across the plasma membrane in a process termed store-operated Ca(2+) entry (SOCE). Because CRAC channels are themselves inhibited by Ca(2+) ions, additional factors are suggested to enable the sustained Ca(2+) influx required for T cell function. Among these factors, we focus here on the contribution of the actin and microtubule cytoskeleton. The TCR-mediated increase in intracellular Ca(2+) evokes a rapid cytoskeleton-dependent polarization, which involves actin cytoskeleton rearrangements and microtubule-organizing center (MTOC) reorientation. Here, we review the molecular mechanisms of Ca(2+) flux and cytoskeletal rearrangements, and further describe the way by which the cytoskeletal networks feedback to Ca(2+) signaling by controlling the spatial and temporal distribution of Ca(2+) sources and sinks, modulating TCR-dependent Ca(2+) signals, which are required for an appropriate T cell response. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
T cell antigen receptor (TCR) activation triggers profound changes in the actin cytoskeleton. In addition to controlling cellular shape and polarity, this process regulates vital T cell responses, such as T cell adhesion, motility, and proliferation. These depend on the recruitment of the signaling proteins Nck and Wiskott-Aldrich syndrome protein (WASp) to the site of TCR activation and on the functional properties of the adapter proteins linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). We now demonstrate that Nck is necessary but insufficient for the recruitment of WASp. We show that two pathways lead to SLP76-dependent actin rearrangement. One requires the SLP76 acidic domain, crucial to association with the Nck SH2 domain, and another requires the SLP76 SH2 domain, essential for interaction with the adhesion-and degranulation-promoting adapter protein ADAP. Functional cooperation between Nck and ADAP mediates SLP76-WASp interactions and actin rearrangement. We also reveal the molecular mechanism linking ADAP to actin reorganization.T cell activation triggers multiple molecular events, including the activation of protein tyrosine kinases (PTKs), formation of multiprotein signaling complexes, and activation of enzymes and transcription factors (25,37,47). Cytoskeletal actin reorganization is also dependent on these events initiated at the T cell-antigen-presenting cell (APC) interface, the immunological synapse (IS). Interference with actin dynamics results in an impaired immune response and can induce T cell anergy (40).We and others (2,4,8,11,12,16) have demonstrated complex molecular events linking T cell antigen receptor (TCR) activation to actin rearrangement. One major pathway, mediated by the activation of multiple PTKs, leads to phosphorylation of the adapter molecules linker for activation of T cells (LAT) and SH2-domain-containing leukocyte protein of 76 kDa (SLP76). Phosphorylation of SLP76 leads to recruitment of the Nck adapter molecule, which is associated with key regulators of the actin cytoskeleton Wiskott-Aldrich syndrome protein (WASp) and WAVE2.The molecular structure of SLP76 consists of an N-terminal sterile-alpha motif (SAM) (41), an acidic domain containing tyrosine residues subject to phosphorylation, a central prolinerich region, and a C-terminal SH2 domain. Phosphorylation of the tyrosines allows the interaction of SLP76 with the adapter Nck, the Rho-family GEF, VAV, and Itk, all via their SH2 domains (5,8,48,49,51). The interactions of SLP76, Nck, and VAV are essential for the activation of WASp and its recruitment to the IS (51). TCR engagement also induces the association of the SLP76 SH2 domain with the adhesion-and degranulation-promoting adapter protein (ADAP) and to the serine-threonine kinase hematopoietic progenitor kinase 1 (HPK-1) (38). In addition to SLP76, ADAP is capable of binding other proteins, and it is recruited to the IS (26, 35). The role of ADAP in integrin function has been explored (10,23,36,46); however, it...
Protein-protein interactions regulate and control many cellular functions. A multimolecular complex consisting of the adaptor proteins SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kD), Nck, and the guanine nucleotide exchange factor Vav1 is recruited to the T cell side of the interface with an antigen-presenting cell during initial T cell activation. This complex is crucial for regulation of the actin machinery, antigen recognition, and signaling in T cells. We studied the interactions between these proteins as well as the dynamics of their recruitment into a complex that governs cytoskeletal reorganization. We developed a triple-color Förster resonance energy transfer (3FRET) system to observe the dynamics of the formation of this trimolecular signaling complex in live human T cells and to follow the three molecular interactions in parallel. Using the 3FRET system, we demonstrated that dimers of Nck and Vav1 were constitutively formed independently of both T cell activation and the association between SLP-76 and Nck. After T cell receptor stimulation, SLP-76 was phosphorylated, which enabled the binding of Nck. A point mutation in the proline-rich site of Vav1, which abolishes its binding to Nck, impaired actin rearrangement, suggesting that Nck-Vav1 dimers play a critical role in regulation of the actin machinery. We suggest that these findings revise the accepted model of the formation of a complex of SLP-76, Nck, and Vav1 and demonstrate the use of 3FRET as a tool to study signal transduction in live cells.
Wiskott-Aldrich syndrome protein (WASp) is a key regulator of the actin cytoskeletal machinery. Binding of WASp-interacting protein (WIP) to WASp modulates WASp activity and protects it from degradation. Formation of the WIP-WASp complex is crucial for the adaptive immune response. We found that WIP and WASp interacted in cells through two distinct molecular interfaces. One interaction occurred between the WASp-homology-1 (WH1) domain of WASp and the carboxyl-terminal domain of WIP that depended on the phosphorylation status of WIP, which is phosphorylated by protein kinase C θ (PKCθ) in response to T cell receptor activation. The other interaction occurred between the verprolin homology, central hydrophobic region, and acidic region (VCA) domain of WASp and the amino-terminal domain of WIP. This latter interaction required actin, because it was inhibited by latrunculin A, which sequesters actin monomers. With triple-color fluorescence resonance energy transfer (3FRET) technology, we demonstrated that the WASp activation mechanism involved dissociation of the first interaction, while leaving the second interaction intact. This conformation exposed the ubiquitylation site on WASp, leading to degradation of WASp. Together, these data suggest that the activation and degradation of WASp are delicately balanced and depend on the phosphorylation state of WIP. Our molecular analysis of the WIP-WASp interaction provides insight into the regulation of actin-dependent processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.