Active soft bodies can affect their shape through an internal actuation mechanism that induces a deformation. Similar to recent work, this paper utilizes a differentiable, quasi-static, and physics-based simulation layer to optimize for actuation signals parameterized by neural networks. Our key contribution is a general and implicit formulation to control active soft bodies by defining a function that enables a continuous mapping from a spatial point in the material space to the actuation value. This property allows us to capture the signal's dominant frequencies, making the method discretization agnostic and widely applicable. We extend our implicit model to mandible kinematics for the particular case of facial animation and show that we can reliably reproduce facial expressions captured with high-quality capture systems. We apply the method to volumetric soft bodies, human poses, and facial expressions, demonstrating artist-friendly properties, such as simple control over the latent space and resolution invariance at test time.
Purpose Presurgical orthopedic plates are widely used for the treatment of cleft lip and palate, which is the most common craniofacial birth defect. For the traditional plate fabrication, an impression is taken under airway-endangering conditions, which recent digital alternatives overcome via intraoral scanners. However, these alternatives demand proficiency in 3D modeling software in addition to the generally required clinical knowledge of plate design. Methods We address these limitations with a data-driven and fully automated digital pipeline, endowed with a graphical user interface. The pipeline adopts a deep learning model to landmark raw intraoral scans of arbitrary mesh topology and orientation, which guides the nonrigid surface registration subsequently employed to segment the scans. The plates that are individually fit to these segmented scans are 3D-printable and offer optional customization. Results With the distance to the alveolar ridges closely centered around the targeted 0.1 mm, our pipeline computes tightly fitting plates in less than 3 min. The plates were approved in 12 out of 12 cases by two cleft care professionals in a printed-model-based evaluation. Moreover, since the pipeline was implemented in clinical routine in two hospitals, 19 patients have been undergoing treatment utilizing our automated designs. Conclusion The results demonstrate that our automated pipeline meets the high precision requirements of the medical setting employed in cleft lip and palate care while substantially reducing the design time and required clinical expertise, which could facilitate access to this presurgical treatment, especially in low-income countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.