In this paper, we study singularly perturbed nonlinear reaction-diffusion equations. The asymptotic behavior of the solution is examined. The difference scheme which is accomplished by the method of integral identities with using of interpolation quadrature rules with weight functions and remainder term integral form is established on adaptive mesh. Uniform convergence and stability of the difference method are discussed in the discrete maximum norm. The discrete scheme shows that orders of convergent rates are close to 2. An algorithm is presented, and some problems are solved to validate the theoretical results.
In this paper, we study quasilinear Volterra integro-differential equations (VIDEs). Asymptotic estimates are made for the solution of VIDE. Finite difference scheme, which is accomplished by the method of integral identities using interpolating quadrature rules with weight functions and remainder term in integral form, is presented for the VIDE. Error estimates are carried out according to the discrete maximum norm. It is given an effective quasilinearization technique for solving nonlinear VIDE. The theoretical results are performed on numerical examples.
This paper presents a ε-uniform and reliable numerical scheme to solve second-order singularly perturbed Volterra–Fredholm integro-differential equations. Some properties of the analytical solution are given, and the finite difference scheme is established on a non-uniform mesh by using interpolating quadrature rules and the linear basis functions. An error analysis is successfully carried out on the Boglaev–Bakhvalov-type mesh. Some numerical experiments are included to authenticate the theoretical findings. In this regard, the main advantage of the suggested method is to yield stable results on layer-adapted meshes.
In this study, singularly perturbed mixed integro-differential equations (SPMIDEs) are taken into account.
First, the asymptotic behavior of the solution is investigated.
Then, by using interpolating quadrature rules and an exponential basis function, the finite difference scheme is constructed on a uniform mesh.
The stability and convergence of the proposed scheme are analyzed in the discrete maximum norm.
Some numerical examples are solved, and numerical outcomes are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.