Abstract-Computer systems often reach a point at which the relative cost to increase some tunable parameter is no longer worth the corresponding performance benefit. These "knees" typically represent beneficial points that system designers have long selected to best balance inherent trade-offs. While prior work largely uses ad hoc, system-specific approaches to detect knees, we present Kneedle, a general approach to online and offline knee detection that is applicable to a wide range of systems. We define a knee formally for continuous functions using the mathematical concept of curvature and compare our definition against alternatives. We then evaluate Kneedle's accuracy against existing algorithms on both synthetic and real data sets, and evaluate its performance in two different applications.
The limits on the minimum and maximum channel spacing of an unfiltered wavelength division multiplexed soliton communication system are examined. It is shown that soliton frequency shifts due to collisions at the receiver limit the minimum channel spacing to about four soliton spectral widths while the gain deviation among different channels sets a limit on the maximum channel spacing. The gain mismatch tolerance is determined.
Today's cloud-based services integrate globally distributed resources into seamless computing platforms. Provisioning and accounting for the resource usage of these Internet-scale applications presents a challenging technical problem. This paper presents the design and implementation of distributed rate limiters, which work together to enforce a global rate limit across traffic aggregates at multiple sites, enabling the coordinated policing of a cloud-based service's network traffic. Our abstraction not only enforces a global limit, but also ensures that congestion-responsive transport-layer flows behave as if they traversed a single, shared limiter. We present two designs-one general purpose, and one optimized for TCP-that allow service operators to explicitly trade off between communication costs and system accuracy, efficiency, and scalability. Both designs are capable of rate limiting thousands of flows with negligible overhead (less than 3% in the tested configuration). We demonstrate that our TCP-centric design is scalable to hundreds of nodes while robust to both loss and communication delay, making it practical for deployment in nationwide service providers.
Type II topoisomerases are enzymes that change the topology of DNA by performing strand-passage. In particular, they unknot knotted DNA very efficiently. Motivated by this experimental observation, we investigate transition probabilities between knots. We use the BFACF algorithm to generate ensembles of polygons in Z(3) of fixed knot type. We introduce a novel strand-passage algorithm which generates a Markov chain in knot space. The entries of the corresponding transition probability matrix determine state-transitions in knot space and can track the evolution of different knots after repeated strand-passage events. We outline future applications of this work to DNA unknotting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.